Skip to content
MathWorks - Mobile View
  • 登录到您的 MathWorks 帐户登录到您的 MathWorks 帐户
  • Access your MathWorks Account
    • 我的帐户
    • 我的社区资料
    • 关联许可证
    • 登出
  • 产品
  • 解决方案
  • 学术
  • 支持
  • 社区
  • 活动
  • 获取 MATLAB
MathWorks
  • 产品
  • 解决方案
  • 学术
  • 支持
  • 社区
  • 活动
  • 获取 MATLAB
  • 登录到您的 MathWorks 帐户登录到您的 MathWorks 帐户
  • Access your MathWorks Account
    • 我的帐户
    • 我的社区资料
    • 关联许可证
    • 登出

视频与网上研讨会

  • MathWorks
  • 视频
  • 视频首页
  • 搜索
  • 视频首页
  • 搜索
  • 联系销售人员
  • 试用软件
2:14 Video length is 2:14.
  • Description
  • Full Transcript
  • Related Resources

What Is Statistics and Machine Learning Toolbox?

Statistics and Machine Learning Toolbox™ provides tools for accessing, preprocessing, and visualizing data; extracting features; training and optimizing models; and preparing models for deployment.

The typical workflow begins with accessing, cleaning, and preprocessing your data in preparation for extracting features. The toolbox supports all widely used classification, regression, and clustering algorithms, and it makes the challenging parts of model building easier with:

• Point-and-click apps for training and comparing models

• Automatic hyperparameter tuning and feature selection for optimizing model performance

• Scaling processing to big data and clusters using the same code

• Fast execution compared to popular open source tools

With MATLAB Coder™ you can automatically generate C/C++ code from machine learning models for use in embedded and high-performance applications.

The statistics and machine learning tool box provides tools for discovering patterns and selecting features, training classification or regression models with apps, and deploying to enterprise and embedded systems. In this example, a regression model predicts future loads in electric grids using multiple sources of data including timestamped historical electric load data and weather data. You can start exploring with descriptive statistics and visualizations including box plots to compare means and variances, dendrograms to reveal clustering and structure.

After preprocessing your data in MATLAB, you can identify which variables to select as features based on high correlations between predictors and response. Have principal component analysis identify transformed features that account for the majority of the data variability or use automated feature selection methods.

With the classification and regression Learner app you can interactively build predictive classification or regression models including nearest neighbor, decision trees, and shallow neural networks. Optimize hyperparameters, compare results from multiple models and cross-validation to a separate test data, and visualize performance with confusion matrices or ROC curves. Many of the toolbox algorithms work with out-of-memory data, without requiring any code changes. Once you've settled on a machine learning model you can deploy that model to IT systems using MATLAB compiler or generate standalone c-code that can be used on embedded devices with MATLAB Coder.

You can incrementally update linear models with new data and also update embedded models without regenerating the prediction code. The statistics and machine learning tool box offers a variety of statistical functions including hypothesis tests, ANOVA, and industrial statistics. To get started refer to an example, the information on the product page, or download a free trial below.

Related Products

  • Statistics and Machine Learning Toolbox

Learn More

使用 MATLAB 进行机器学习
Introduction to Machine Learning (4 videos)

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper

Feedback

Featured Product

Statistics and Machine Learning Toolbox

  • Request Trial
  • Get Pricing

Up Next:

34:34
Machine Learning Made Easy

Related Videos:

5:36
Machine Learning for Predictive Modelling (Highlights)
44:37
Machine Learning for Predictive Modelling
41:25
Machine Learning with MATLAB
34:31
Machine Learning with MATLAB: Getting Started with...

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • 联系销售人员
  • 试用软件

MathWorks

Accelerating the pace of engineering and science

MathWorks 公司是世界领先的为工程师和科学家提供数学计算软件的开发商。

发现…

了解产品

  • MATLAB
  • Simulink
  • 学生版软件
  • 硬件支持
  • File Exchange

试用或购买

  • 下载
  • 试用软件
  • 联系销售
  • 定价和许可
  • 如何购买

如何使用

  • 文档
  • 教程
  • 示例
  • 视频与网上研讨会
  • 培训

获取支持

  • 安装帮助
  • MATLAB Answers
  • 咨询
  • 许可中心
  • 联系支持

关于 MathWorks

  • 招聘
  • 新闻室
  • 社会愿景
  • 客户案例
  • 关于 MathWorks
  • Select a Web Site United States
  • 信任中心
  • 商标
  • 隐私权政策
  • 防盗版
  • 应用状态

京公网安备 11010502045942号京ICP备12052471号

© 1994-2022 The MathWorks, Inc.

  • Weibo
  • WeChat

    WeChat

  • Bilibili
  • Youku
  • LinkedIn
  • RSS

关注我们