linearize
Class: Aero.FixedWing
Namespace: Aero
Syntax
linsys = linearize(aircraft,state)
linsys = linearize(___,Name,Value)
Description
returns a linear state-space representation of a fixed-wing linsys
= linearize(aircraft
,state
)aircraft
linearized around a point given by state
.
returns the linear system using additional options specified by one or more
linsys
= linearize(___,Name,Value
)Name,Value
pair arguments.
Input Arguments
aircraft
— Aero.FixedWing
object
scalar
Aero.FixedWing
object, specified as a scalar.
state
— Aero.FixedWing.State
object
scalar
Aero.FixedWing.State
object, specified as a scalar.
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: 'RelativePerturbation','1e-5'
RelativePerturbation
— Relative perturbation
1e-5
(default) | scalar numeric
Relative perturbation of the system, specified as a scalar numeric. This perturbation takes the form of:
Perturbation Type | Definition |
---|---|
System State perturbation |
|
System input perturbation |
|
To calculate the Jacobian of the system, linearize
uses the
result of these equations in conjunction with the
DifferentialMethod
property.
Example: 'RelativePerturbation',1e-5
Data Types: double
DifferentialMethod
— Direction while perturbing model
'Forward'
(default) | 'Backward'
| 'Central'
Direction while perturbing model, specified as:
Direction | Description |
---|---|
| Forward difference method that adds |
| Backward difference method that adds statePert and
ctrlPert to the base states an inputs,
respectively. |
| Central difference method that adds and subtracts
|
Example: 'DifferentialMethod','Backward'
Data Types: char
| string
Output Arguments
linsys
— Linear state-space model
scalar
Linear state-space model, returned as a scalar. The inputs and outputs of the state-space model depend on the degrees of freedom of the fixed-wing model and the number of control states on the model.
Examples
Calculate Linear State-Space Model
This example shows how to calculate the linear state-space model of a Cessna 182 during cruise.
[C182, CruiseState] = astC182(); linSys = linearize(C182, CruiseState)
linSys = A = XN XE XD U V W P Q R Phi Theta Psi XN 0 0 0 1 0 -0.00729 0 0 0 0 1.603 -0.0011 XE 0 0 0 0 1 0 0 0 0 -1.605 0 220.1 XD 0 0 0 0.00729 0 1 0 0 0 -8.023e-06 -220.1 -8.023e-06 U 0 0 0 -30.21 -4.093e-07 0.08729 0 0 0 -1.182e-06 -32.18 -1.182e-06 V 0 0 0 0 -0.1873 0 -0.6433 0 -218.3 32.19 0 -0.2346 W 0 0 0 -0.2873 -6.023e-09 -2.186 0 213.6 0 -0.0001595 0.2324 0 P 0 0 0 0 -0.1375 0 -12.97 0 2.139 0 0 0 Q 0 0 0 0.01617 3.331e-10 -0.1886 0 -6.855 0 1.865e-06 -0.002718 0 R 0 0 0 0 0.04267 0 -0.3573 0 -1.216 0 0 0 Phi 0 0 0 0 0 0 1 0 -0.00729 0 0 0 Theta 0 0 0 0 0 0 0 1 0 0 0 0 Psi 0 0 0 0 0 0 0 0 1 0 0 0 B = Aileron Elevator Rudder Propeller XN 0 0 0 0 XE 0 0 0 0 XD 0 0 0 0 U 0 0 0 3.356 V 0 0 19.61 0 W 0 -44.69 0 0 P 75.07 0 31.47 0 Q 0 -42.69 0 0 R -7.962 0 -10.44 0 Phi 0 0 0 0 Theta 0 0 0 0 Psi 0 0 0 0 C = XN XE XD U V W P Q R Phi Theta Psi XN 1 0 0 0 0 0 0 0 0 0 0 0 XE 0 1 0 0 0 0 0 0 0 0 0 0 XD 0 0 1 0 0 0 0 0 0 0 0 0 U 0 0 0 1 0 0 0 0 0 0 0 0 V 0 0 0 0 1 0 0 0 0 0 0 0 W 0 0 0 0 0 1 0 0 0 0 0 0 P 0 0 0 0 0 0 1 0 0 0 0 0 Q 0 0 0 0 0 0 0 1 0 0 0 0 R 0 0 0 0 0 0 0 0 1 0 0 0 Phi 0 0 0 0 0 0 0 0 0 1 0 0 Theta 0 0 0 0 0 0 0 0 0 0 1 0 Psi 0 0 0 0 0 0 0 0 0 0 0 1 D = Aileron Elevator Rudder Propeller XN 0 0 0 0 XE 0 0 0 0 XD 0 0 0 0 U 0 0 0 0 V 0 0 0 0 W 0 0 0 0 P 0 0 0 0 Q 0 0 0 0 R 0 0 0 0 Phi 0 0 0 0 Theta 0 0 0 0 Psi 0 0 0 0 Continuous-time state-space model.
Version History
Introduced in R2021a
See Also
Aero.FixedWing
| forcesAndMoments
| nonlinearDynamics
| staticStability
MATLAB 命令
您点击的链接对应于以下 MATLAB 命令:
请在 MATLAB 命令行窗口中直接输入以执行命令。Web 浏览器不支持 MATLAB 命令。
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)