Main Content

Antenna Model Generation and Full-Wave Analysis From Photo

This example demonstrates the process of using a photograph of a planar antenna to generate a viable antenna model and its subsequent analysis for port, surface and field characteristics. The Image Segmenter app is used to perform segmentation on the image of an RFID tag, and the resulting boundaries are used to set up the antenna model in Antenna Toolbox™. An initial impedance analysis is done over a frequency range to understand the port characteristics of the antenna. After determining the resonant frequency, the current and far-field pattern are calculated and plotted.

The RFID Tag

Begin by taking a photo of an RFID tag against a high-color contrast background. The camera is positioned directly over the antenna. This photo was taken with a smartphone. RFID_meander_tag.PNG

Image Segmentation Using Image Segmenter App

Choose Foreground and Background

Using the app, import this antenna and choose the graph cut option on the toolstrip. Pick the foreground and background regions on the image. For this example, the foreground region is the metallized regions of the RFID tag and the background is the colored region.

App_pick_region.PNG

App_initial_segmentation.PNG

Improve segmentation quality

Choosing the background in the app results in an initial segmentation of the image into the foreground and background portions. If this segmentation is sufficient, apply the changes and proceed to the next part of the process by closing the graph cut tab.

App_binary_boundary.PNG

If however, all parts of the antenna have not been identified yet, continue marking up the foreground and background regions. This allows the segmentation algorithm to improve upon the results. It may also be of use to adjust the sub-region density to refine the quality of segmentation. After making the required adjustments, apply the changes and close the graph-cut segmentation tab in the app. On returning to the main tab, there are several options to further improve the segmentation. In this example we use the Active Contours option and evolve the existing segmentation to fill in any imperfections in the boundaries.

App_active_contours.PNG

Notice that after several iterations of the active contours algorithm has executed, the boundary is much smoother and free of notch like artifacts. An example region is shown for comparison.

App_active_contours_result.PNG

Export Code and Boundary

The color based segmentation process yields the mask of the antenna image. Use the export option on the app, to obtain a function and the boundary information which can then be used in a script for further processing (such as this one).

App_export_code_boundary.PNG

Boundary Clean-up

Read Image, Create Mask and Visualize

The image of the RFID tag is imported into the workspace and the boundary is generated by using the exported code from the Image Segmenter app.

I = imread("IMG_2151.JPG");
BWf = createMask_2151(I);
figure
imshow(BWf)

Figure contains an axes object. The hidden axes object contains an object of type image.

Calculate Boundaries in Cartesian Space

For performing full-wave analysis on this structure the next step is to convert the pixel space representation of the boundary to a Cartesian space representation. To do this we extract the maximum and minimum pixel indices in the x, y dimensions and scale it based on overall tag dimensions in terms of its length and width.

B = bwboundaries(BWf);
xmax = max(B{1}(:,1));
xmin = min(B{1}(:,1));
ymax = max(B{1}(:,2));
ymin = min(B{1}(:,2));

% Scale per pixel based on tag dimensions
L = 18.61e-3;
W = 72.27e-3;
LperColpixel = L/(xmax-xmin);
WperRowpixel = W/(ymax-ymin);
Bp = B;
for i = 1:length(Bp)
    Bp{i} = [Bp{i}(:,1).*LperColpixel Bp{i}(:,2).*WperRowpixel zeros(size(Bp{i},1),1)];
end
p = cell2mat(Bp);
x = p(:,1);
y = p(:,2);
figure
plot(x,y,'*')
grid on
axis equal
xlabel("x (m)")
ylabel("y (m)")
title("Boundary points")

Figure contains an axes object. The axes object with title Boundary points, xlabel x (m), ylabel y (m) contains a line object which displays its values using only markers.

Reduce Boundary Points

The boundary has 28000 points, and this will result in a very large mesh size. Downsample this boundary by a factor of 39. The downsample factor was chosen since it still represented the boundary details accurately based on a simple visual inspection.

D = 39; 
xD = x(1:D:end);
yD = y(1:D:end);
BpD{1} = Bp{1}(1:D:end,:);
figure
hold on
plot(xD,yD,'r*')
shg
grid on
axis equal

Figure contains an axes object. The axes contains a line object which displays its values using only markers.

Create Layer For PCB Stack

Create a shape from the boundary.

pol = antenna.Polygon(Vertices=BpD{1});

Create the antenna feed

The feed region of the tag still has some sharp artifacts in the boundary. This must be cleaned up prior to defining the feed. Use a boolean subtract operation by creating a rectangle to remove this artifact.

rect1 = antenna.Rectangle(Length=5e-3, Width=2e-3, ...
                         Center=[0.019 0.0392]);

The final step, is to define the feeding strip. Add a feed in the form of a rectangle.

rect2 = antenna.Rectangle(Length=0.25e-3, Width=2e-3, ...
                        Center=[0.0185 0.0392]);

Perform addition and subtraction operations on these shapes to create the resultant shape.

final_shape = pol - rect1 + rect2;

Create PCB Stack

Assign the resultant shape generated as the layer for PCB stack. FeedLocation is specified appropriately so that it lies on this layer

p = pcbStack;
p.Layers = {final_shape};
p.BoardShape = antenna.Rectangle(Length=1, Width=1);
p.FeedLocations = [0.0185 0.0392 1 ];
p.FeedDiameter = 1.25e-4;
show(p)

Figure contains an axes object. The axes object with title pcbStack antenna element, xlabel x (mm), ylabel y (mm) contains 3 objects of type patch, surface. These objects represent PEC, feed.

Port Analysis - Impedance Behavior vs. Frequency

Determine the port characteristics of this antenna by executing an impedance analysis over a coarse sampled frequency range. The tag is expected to operate in the UHF band, between 800 - 900 MHz. Our frequency range will extend slightly past 900 MHz.

f_coarse = linspace(0.8e9,0.95e9,21);
figure
impedance(p,f_coarse)

Figure contains an axes object. The axes object with title Impedance, xlabel Frequency (MHz), ylabel Impedance (ohms) contains 2 objects of type line. These objects represent Resistance, Reactance.

Tune Tag for Resonance

The tag is inductive and has a good resistive component at approximately 854 MHz. Moreover the reactance shows the classic parallel resonance curve around that frequency. Typically, the input impedance of the chip would be complex, to match to the tag. Use Load property on the antenna to cancel the inductive component. Since the reactance is about 200 Ω create a load with reactance of -200 Ω and add it to the antenna model.

X = -1i*200;
zl = lumpedElement;
zl.Impedance = X;
p.Load = zl;

Recalculate impedance With the load in place at the feed, the inductive part of the reactance should be canceled at 854 MHz. Confirm this by analyzing the impedance over a fine frequency range. The reactance at 854 MHz should be approximately 0 ohms.

f_fine = linspace(0.8e9,0.95e9,51);
figure
impedance(p,f_fine)

Figure contains an axes object. The axes object with title Impedance, xlabel Frequency (MHz), ylabel Impedance (ohms) contains 2 objects of type line. These objects represent Resistance, Reactance.

Surface Analysis - Current behavior at Center Frequency

At the center frequency visualize the current distribution on the antenna surface.

figure
current(p,854e6,Scale="log10");
view(0,90);

Figure contains an axes object. The axes object with title Current distribution (log10), xlabel x (m), ylabel y (m) contains 3 objects of type patch.

Field Analysis - Pattern at Center Frequency

RFID tags typically have an omnidirectional far-field pattern in one plane. Visualize the far-field radiation pattern of the tag.

figure
pattern(p,854e6)

Figure contains 2 axes objects and other objects of type uicontrol. Axes object 1 contains 3 objects of type patch, surface. Hidden axes object 2 contains 17 objects of type surface, line, text, patch.

The tag has a gain of approximately 2dBi at 854 MHz.

Conclusion

A procedure for identifying the antenna boundary from a photograph, conversion into a geometric model of the antenna and its subsequent full-wave analysis has been detailed in this example. These steps are graphically depicted as shown:

Photo_to_antenna.PNG

The antenna performance characteristics obtained from this procedure are good enough for further integration into a larger system simulation.

See Also

Objects

Functions

Related Topics