Main Content

CWE Rule 197

Numeric Truncation Error

Since R2023a

Description

Rule Description

Truncation errors occur when a primitive is cast to a primitive of a smaller size and data is lost in the conversion.

Polyspace Implementation

The rule checker checks for these issues:

  • Call to memset family with unintended value

  • Float conversion overflow

  • Integer conversion overflow

  • Sign change integer conversion overflow

  • Tainted sign change conversion

  • Unsigned integer conversion overflow

Examples

expand all

Issue

This issue occurs when Polyspace® Bug Finder™ detects a use of the memset or wmemset function with possibly incorrect arguments.

void *memset (void *ptr, int value, size_t num) fills the first num bytes of the memory block that ptr points to with the specified value. If the argument value is incorrect, the memory block is initialized with an unintended value.

The unintended initialization can occur in the following cases.

IssueRiskPossible Fix
The second argument is '0' instead of 0 or '\0'.The ASCII value of character '0' is 48 (decimal), 0x30 (hexadecimal), 069 (octal) but not 0 (or '\0').If you want to initialize with '0', use one of the ASCII values. Otherwise, use 0 or '\0'.
The second and third arguments are probably reversed. For instance, the third argument is a literal and the second argument is not a literal.If the order is reversed, a memory block of unintended size is initialized with incorrect arguments.Reverse the order of the arguments.
The second argument cannot be represented in a byte.If the second argument cannot be represented in a byte, and you expect each byte of a memory block to be filled with that argument, the initialization does not occur as intended.

Apply a bit mask to the argument to produce a wrapped or truncated result that can be represented in a byte. When you apply a bit mask, make sure that it produces an expected result.

For instance, replace memset(a, -13, sizeof(a)) with memset(a, (-13) & 0xFF, sizeof(a)).

Fix

The fix depends on the root cause of the defect. See fixes in the table above and code examples with fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

Example — Value Cannot Be Represented in a Byte
#include <string.h>

#define SIZE 32
void func(void) {
    char buf[SIZE];
    int c = -2;
    memset(buf, (char)c, sizeof(buf));  //Noncompliant
}

In this example, (char)c cannot be represented in a byte.

Correction — Avoid Using memset

One possible correction is to reserve the use of memset only for setting or clearing all bits in a buffer. For instance, in this code, memset is called to clear the bits of the character array buf.

#include <string.h>

#define SIZE 32
void func(void) {
    char buf[SIZE   ];
    int c = -2;
    memset(buf, 0, sizeof(buf));//Compliant 
	/* After clearing buf, use it in operations*/
}
Issue

This issue occurs when converting a floating point number to a smaller floating point data type. If the variable does not have enough memory to represent the original number, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor. See Target processor type (-target).

Risk

Overflows can result in unpredictable values from computations. The result can be infinity or the maximum finite value depending on the rounding mode used in the implementation. If you use the result of an overflowing conversion in subsequent computations and do not account for the overflow, you can see unexpected results.

Fix

The fix depends on the root cause of the defect. Often the result details show a sequence of events that led to the defect. Use this event list to determine how the variable being converted acquires its current value You can implement the fix on any event in the sequence. If the result details do not show the event history, you can trace back using right-click options in the source code and see previous related events. See also Interpret Bug Finder Results in Polyspace Desktop User Interface or Interpret Bug Finder Results in Polyspace Access Web Interface (Polyspace Access).

You can fix the defect by:

  • Using a bigger data type for the result of the conversion so that all values can be accommodated.

  • Checking for values that lead to the overflow and performing appropriate error handling.

In general, avoid conversions to smaller floating point types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

By default, a Bug Finder analysis does not recognize infinities and NaNs. Operations that results in infinities and NaNs might be flagged as defects. To handle infinities and NaN values in your code, use the option Consider non finite floats (-allow-non-finite-floats).

Extend Checker

A default Bug Finder analysis might not raise this defect when the input values are unknown and only a subset of inputs cause an issue. To check for defects caused by specific system input values, run a stricter Bug Finder analysis. See Extend Bug Finder Checkers to Find Defects from Specific System Input Values.

Example — Converting from double to float
float convert(void) {

    double diam = 1e100;
    return (float)diam;  //Noncompliant
}

In the return statement, the variable diam of type double (64 bits) is converted to a variable of type float (32 bits). However, the value 1^100 requires more than 32 bits to be precisely represented.

Issue

This issue occurs when converting an integer to a smaller integer type. If the variable does not have enough bytes to represent the original value, the conversion overflows. For instance, if you perform a comparison between implementation-defined type time_t and a signed integer, Polyspace reports a violation because time_t might be implemented as an unsigned integer.

The exact storage allocation for different floating point types depends on your processor. See Target processor type (-target).

Risk

Integer conversion overflows result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details (or source code tooltips in Polyspace as You Code) show a sequence of events that led to the defect. You can implement the fix on any event in the sequence. If the result details do not show this event history, you can search for previous references of variables relevant to the defect using right-click options in the source code and find related events. See also Interpret Bug Finder Results in Polyspace Desktop User Interface or Interpret Bug Finder Results in Polyspace Access Web Interface (Polyspace Access).

You can fix the defect by:

  • Using a bigger data type for the result of the conversion so that all values can be accommodated.

  • Checking for values that lead to the overflow and performing appropriate error handling.

In general, avoid conversions to smaller integer types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

Extend Checker

A default Bug Finder analysis might not raise this defect when the input values are unknown and only a subset of inputs cause an issue. To check for defects caused by specific system input values, run a stricter Bug Finder analysis. See Extend Bug Finder Checkers to Find Defects from Specific System Input Values.

Example — Converting from int to char
char convert(void) {

    int num = 1000000;

    return (char)num;  //Noncompliant
}

In the return statement, the integer variable num is converted to a char. However, an 8-bit or 16-bit character cannot represent 1000000 because it requires at least 20 bits. So the conversion operation overflows.

Correction — Change Conversion Type

One possible correction is to convert to a different integer type that can represent the entire number.

long convert(void) {

    int num = 1000000;

    return (long)num;
}
Issue

This issue occurs when converting an unsigned integer to a signed integer. If the variable does not have enough bytes to represent both the original constant and the sign bit, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor. See Target processor type (-target).

Fix

The fix depends on the root cause of the defect. Often the result details (or source code tooltips in Polyspace as You Code) show a sequence of events that led to the defect. You can implement the fix on any event in the sequence. If the result details do not show this event history, you can search for previous references of variables relevant to the defect using right-click options in the source code and find related events. See also Interpret Bug Finder Results in Polyspace Desktop User Interface or Interpret Bug Finder Results in Polyspace Access Web Interface (Polyspace Access).

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

Extend Checker

A default Bug Finder analysis might not raise this defect when the input values are unknown and only a subset of inputs cause an issue. To check for defects caused by specific system input values, run a stricter Bug Finder analysis. See Extend Bug Finder Checkers to Find Defects from Specific System Input Values.

Example — Convert from unsigned char to char
char sign_change(void) {
    unsigned char count = 255;

    return (char)count;  //Noncompliant
}

In the return statement, the unsigned character variable count is converted to a signed character. However, char has 8 bits, 1 for the sign of the constant and 7 to represent the number. The conversion operation overflows because 255 uses 8 bits.

Correction — Change conversion types

One possible correction is using a larger integer type. By using an int, there are enough bits to represent the sign and the number value.

int sign_change(void) {
    unsigned char count = 255;

    return (int)count;
}
Issue

This issue occurs when values from unsecure sources are converted, implicitly or explicitly, from signed to unsigned values.

For example, functions that use size_t as arguments implicitly convert the argument to an unsigned integer. Some functions that implicitly convert size_t are:

bcmp
memcpy
memmove
strncmp
strncpy
calloc
malloc
memalign

Risk

If you convert a small negative number to unsigned, the result is a large positive number. The large positive number can create security vulnerabilities. For example, if you use the unsigned value in:

  • Memory size routines — causes allocating memory issues.

  • String manipulation routines — causes buffer overflow.

  • Loop boundaries — causes infinite loops.

Fix

To avoid converting unsigned negative values, check that the value being converted is within an acceptable range. For example, if the value represents a size, validate that the value is not negative and less than the maximum value size.

Extend Checker

By default, Polyspace assumes that data from external sources are tainted. See Sources of Tainting in a Polyspace Analysis. To consider any data that does not originate in the current scope of Polyspace analysis as tainted, use the command line option -consider-analysis-perimeter-as-trust-boundary.

Example — Set Memory Value with Size Argument
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

enum {
    SIZE10  =  10,
    SIZE100 = 100,
    SIZE128 = 128
};

void bug_taintedsignchange(void) {
    int size;
    scanf("%d",&size);
    char str[SIZE128] = "";
    if (size<SIZE128) {
        memset(str, 'c', size); //Noncompliant
    }
}

In this example, a char buffer is created and filled using memset. The size argument to memset is an input argument to the function.

The call to memset implicitly converts size to unsigned integer. If size is a large negative number, the absolute value could be too large to represent as an integer, causing a buffer overflow.

Correction — Check Value of size

One possible correction is to check if size is inside the valid range. This correction checks if size is greater than zero and less than the buffer size before calling memset.

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

enum {
    SIZE10  =  10,
    SIZE100 = 100,
    SIZE128 = 128
};

void corrected_taintedsignchange(void) {
    int size;
    scanf("%d",&size);
    char str[SIZE128] = "";
    if (size>0 && size<SIZE128) {
        memset(str, 'c', size);  
    }
}
Issue

This issue occurs when converting an unsigned integer to a smaller unsigned integer type. If the variable does not have enough bytes to represent the original constant, the conversion overflows.

The exact storage allocation for different floating point types depends on your processor. See Target processor type (-target).

Risk

Integer conversion overflows result in undefined behavior.

Fix

The fix depends on the root cause of the defect. Often the result details (or source code tooltips in Polyspace as You Code) show a sequence of events that led to the defect. You can implement the fix on any event in the sequence. If the result details do not show this event history, you can search for previous references of variables relevant to the defect using right-click options in the source code and find related events. See also Interpret Bug Finder Results in Polyspace Desktop User Interface or Interpret Bug Finder Results in Polyspace Access Web Interface (Polyspace Access).

You can fix the defect by:

  • Using a bigger data type for the result of the conversion so that all values can be accommodated.

  • Checking for values that lead to the overflow and performing appropriate error handling.

In general, avoid conversions to smaller integer types.

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

Extend Checker

A default Bug Finder analysis might not raise this defect when the input values are unknown and only a subset of inputs cause an issue. To check for defects caused by specific system input values, run a stricter Bug Finder analysis. See Extend Bug Finder Checkers to Find Defects from Specific System Input Values.

Example — Converting from int to char
unsigned char convert(void) {
    unsigned int unum = 1000000U;

    return (unsigned char)unum;  //Noncompliant
}

In the return statement, the unsigned integer variable unum is converted to an unsigned character type. However, the conversion overflows because 1000000 requires at least 20 bits. The C programming language standard does not view unsigned overflow as an error because the program automatically reduces the result by modulo the maximum value plus 1. In this example, unum is reduced by modulo 2^8 because a character data type can only represent 2^8-1.

Correction — Change Conversion Type

One possible correction is to convert to a different integer type that can represent the entire number. For example, long.

unsigned long convert(void) {
    unsigned int unum = 1000000U;

    return (unsigned long)unum;  
}

Check Information

Category: Numeric Errors

Version History

Introduced in R2023a