Main Content

CWE Rule 369

Divide By Zero

Since R2023a

Description

Rule Description

The product divides a value by zero.

Polyspace Implementation

The rule checker checks for these issues:

  • Float division by zero

  • Integer division by zero

  • Tainted division operand

  • Tainted modulo operand

Examples

expand all

Issue

This issue occurs when the denominator of a division operation can be a zero-valued floating point number.

Risk

A division by zero can result in a program crash.

Fix

The fix depends on the root cause of the defect. Often the result details (or source code tooltips in Polyspace as You Code) show a sequence of events that led to the defect. You can implement the fix on any event in the sequence. If the result details do not show this event history, you can search for previous references of variables relevant to the defect using right-click options in the source code and find related events. See also Interpret Bug Finder Results in Polyspace Desktop User Interface or Interpret Bug Finder Results in Polyspace Access Web Interface (Polyspace Access).

It is a good practice to check for zero values of a denominator before division and handle the error. Instead of performing the division directly:

res = num/den;
use a library function that handles zero values of the denominator before performing the division:
res = div(num, den);

See examples of fixes below.

If you do not want to fix the issue, for instance, when you handle infinities in your code, add comments to your result or code to avoid another review. See:

By default, a Bug Finder analysis does not recognize infinities and NaNs. Operations that results in infinities and NaNs might be flagged as defects. To handle infinities and NaN values in your code, use the option Consider non finite floats (-allow-non-finite-floats).

Extend Checker

A default Bug Finder analysis might not raise this defect when the input values are unknown and only a subset of inputs cause an issue. To check for defects caused by specific system input values, run a stricter Bug Finder analysis. See Extend Bug Finder Checkers to Find Defects from Specific System Input Values.

Example — Dividing a Floating Point Number by Zero
float fraction(float num)
{
    float denom = 0.0;
    float result = 0.0;

    result = num/denom; //Noncompliant

    return result;
}

A division by zero error occurs at num/denom because denom is zero.

Correction — Check Before Division
float fraction(float num)
{
    float denom = 0.0;
    float result = 0.0;

    if( ((int)denom) != 0)
        result = num/denom;

    return result;
}

Before dividing, add a test to see if the denominator is zero, checking before division occurs. If denom is always zero, this correction can produce a dead code defect in your Polyspace® results.

Correction — Change Denominator

One possible correction is to change the denominator value so that denom is not zero.

float fraction(float num)
{
    float denom = 2.0;
    float result = 0.0;

    result = num/denom;

    return result;
}
Issue

This issue occurs when the denominator of a division or modulo operation can be a zero-valued integer.

Risk

A division by zero can result in a program crash.

Fix

The fix depends on the root cause of the defect. Often the result details (or source code tooltips in Polyspace as You Code) show a sequence of events that led to the defect. You can implement the fix on any event in the sequence. If the result details do not show this event history, you can search for previous references of variables relevant to the defect using right-click options in the source code and find related events. See also Interpret Bug Finder Results in Polyspace Desktop User Interface or Interpret Bug Finder Results in Polyspace Access Web Interface (Polyspace Access).

It is a good practice to check for zero values of a denominator before division and handle the error. Instead of performing the division directly:

res = num/den;
use a library function that handles zero values of the denominator before performing the division:
res = div(num, den);

See examples of fixes below.

If you do not want to fix the issue, add comments to your result or code to avoid another review. See:

Extend Checker

A default Bug Finder analysis might not raise this defect when the input values are unknown and only a subset of inputs cause an issue. To check for defects caused by specific system input values, run a stricter Bug Finder analysis. See Extend Bug Finder Checkers to Find Defects from Specific System Input Values.

Example — Dividing an Integer by Zero
int fraction(int num)
{
    int denom = 0;
    int result = 0;

    result = num/denom; //Noncompliant

    return result;
}

A division by zero error occurs at num/denom because denom is zero.

Correction — Check Before Division
int fraction(int num)
{
    int denom = 0;
    int result = 0;

    if (denom != 0)
        result = num/denom;

    return result;
}

Before dividing, add a test to see if the denominator is zero, checking before division occurs. If denom is always zero, this correction can produce a dead code defect in your Polyspace results.

Correction — Change Denominator

One possible correction is to change the denominator value so that denom is not zero.

int fraction(int num)
{
    int denom = 2;
    int result = 0;

    result = num/denom;

    return result;
}
Example — Modulo Operation with Zero
int mod_arr(int input)
{
    int arr[5];
    for(int i = 0; i < 5; i++)
    {
        arr[i] = input % i; //Noncompliant
    }

    return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}

In this example, Polyspace flags the modulo operation as a division by zero. Because modulo is inherently a division operation, the divisor (right hand argument) cannot be zero. The modulo operation uses the for loop index as the divisor. However, the for loop starts at zero, which cannot be an iterator.

Correction — Check Divisor Before Operation

One possible correction is checking the divisor before the modulo operation. In this example, see if the index i is zero before the modulo operation.

int mod_arr(int input)
{
    int arr[5];
    for(int i = 0; i < 5; i++)
    {
        if(i != 0)
        {
             arr[i] = input % i;
        }
        else
        {
             arr[i] = input;
        }
    }

    return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}
Correction — Change Divisor

Another possible correction is changing the divisor to a nonzero integer. In this example, add one to the index before the % operation to avoid dividing by zero.

int mod_arr(int input)
{
    int arr[5];
    for(int i = 0; i < 5; i++)
    {
         arr[i] = input % (i+1);
    }

    return arr[0]+arr[1]+arr[2]+arr[3]+arr[4];
}
Issue

This issue occurs when one or both integer operands in a division operation comes from unsecure sources.

Risk

  • If the numerator is the minimum possible value and the denominator is -1, your division operation overflows because the result cannot be represented by the current variable size.

  • If the denominator is zero, your division operation fails possibly causing your program to crash.

These risks can be used to execute arbitrary code. This code is usually outside the scope of a program's implicit security policy.

Fix

Before performing the division, validate the values of the operands. Check for denominators of 0 or -1, and numerators of the minimum integer value.

Extend Checker

By default, Polyspace assumes that data from external sources are tainted. See Sources of Tainting in a Polyspace Analysis. To consider any data that does not originate in the current scope of Polyspace analysis as tainted, use the command line option -consider-analysis-perimeter-as-trust-boundary.

Example — Division of Function Arguments
#include <limits.h>
#include <stdio.h>

extern void print_int(int);

int taintedintdivision(void) {
    long num, denum;
    scanf("%lf %lf", &num, &denum);
    int r =  num/denum; //Noncompliant //Noncompliant
    print_int(r);
    return r;
}

This example function divides two argument variables, then prints and returns the result. The argument values are unknown and can cause division by zero or integer overflow.

Correction — Check Values

One possible correction is to check the values of the numerator and denominator before performing the division.

#include <limits.h>
#include <stdio.h>

extern void print_long(long);

int taintedintdivision(void) {
    long num, denum;
    scanf("%lf %lf", &num, &denum);
    long res= 0;
    if (denum!=0 && !(num==INT_MIN && denum==-1)) {
        res = num/denum;
    }
    print_long(res);
    return res;
}
Issue

This issue occurs when one or both integer operands in a remainder operation (%) comes from unsecure sources.

Risk

  • If the second remainder operand is zero, your remainder operation fails, causing your program to crash.

  • If the second remainder operand is -1, your remainder operation can overflow if the remainder operation is implemented based on the division operation that can overflow.

  • If one of the operands is negative, the operation result is uncertain. For C89, the modulo operation is not standardized, so the result from negative operands is implementation-defined.

These risks can be exploited by attackers to gain access to your program or the target in general.

Fix

Before performing the modulo operation, validate the values of the operands. Check the second operand for values of 0 and -1. Check both operands for negative values.

Extend Checker

By default, Polyspace assumes that data from external sources are tainted. See Sources of Tainting in a Polyspace Analysis. To consider any data that does not originate in the current scope of Polyspace analysis as tainted, use the command line option -consider-analysis-perimeter-as-trust-boundary.

Example — Modulo with User Input
#include <stdio.h>
extern void print_int(int);

int taintedintmod(void) {
    int userden;
    scanf("%d", &userden);
    int rem =  128%userden; //Noncompliant //Noncompliant
    print_int(rem);
    return rem;
}

In this example, the function performs a modulo operation by using a user input. The input is not checked before calculating the remainder for values that can crash the program, such as 0 and -1.

Correction — Check Operand Values

One possible correction is to check the values of the operands before performing the modulo operation. In this corrected example, the modulo operation continues only if the second operand is greater than zero.

#include<stdio.h>
extern void print_int(int);

int taintedintmod(void) {
    int userden;
    scanf("%d", &userden);
    int rem = 0;
    if (userden > 0 ) { 
        rem = 128 % userden; 
    }
    print_int(rem);
    return rem;
}

Check Information

Category: Numeric Errors

Version History

Introduced in R2023a