TensorFlow Lite 应用程序
生成使用 TFLite 库执行推断的代码,并部署在嵌入式目标上。
精选示例
Generate Code for TensorFlow Lite (TFLite) Model and Deploy on Raspberry Pi
Generate code that uses a TensorFlow Lite model for inference.
Deploy Classification Application Using Mobilenet-V3 TensorFlow Lite Model on Host and Raspberry Pi
Generate code for a classification segmentation application that uses Tensorflow Lite model.
Deploy Semantic Segmentation Application Using TensorFlow Lite Model on Host and Raspberry Pi
Generate code for an image segmentation application that uses Tensorflow Lite model.
Deploy Super Resolution Application That Uses TensorFlow Lite (TFLite) Model on Host and Raspberry Pi
Generate code for a super resolution application that uses a TFLite model for inference.
Audio Event Classification Using TensorFlow Lite on Raspberry Pi
Perform audio event classification on Raspberry Pi using the YAMNet pretrained deep neural network from the TensorFlow Lite library.
MATLAB 命令
您点击的链接对应于以下 MATLAB 命令:
请在 MATLAB 命令行窗口中直接输入以执行命令。Web 浏览器不支持 MATLAB 命令。
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)