从 Simulink 应用生成深度学习代码
生成用于在桌面或嵌入式目标上部署的 C/C++ 和 GPU 代码
为预训练的深度神经网络生成代码。通过使用不同的执行环境,您可以在 Simulink® 中加速算法的仿真。通过使用支持包,您还可以生成 C/C++ 和 CUDA® 代码并将其部署在目标硬件上。
模型设置
主题
- GPU Code Generation for Deep Learning Networks Using MATLAB Function Block (GPU Coder)
Simulate and generate code for deep learning models in Simulink using MATLAB function blocks.
- GPU Code Generation for Blocks from the Deep Neural Networks Library (GPU Coder)
Simulate and generate code for deep learning models in Simulink using library blocks.
- Code Generation for a Deep Learning Simulink Model that Performs Lane and Vehicle Detection (GPU Coder)
This example shows how to develop a CUDA® application from a Simulink® model that performs lane and vehicle detection using convolutional neural networks (CNN).
- Generate Generic C/C++ for Sequence-to-Sequence Deep Learning Simulink Models (Simulink Coder)
Generate C/C++ code for a sequence-to-sequence deep learning Simulink model.