量化、投影和剪枝
通过执行量化、投影或剪枝来压缩深度神经网络
将 Deep Learning Toolbox™ 和 Deep Learning Toolbox Model Quantization Library 支持包结合使用,通过以下方式减少深度神经网络的内存占用和计算要求:
使用一阶泰勒逼近从卷积层中对滤波器进行剪枝。然后,您可以从这个剪枝过的网络中生成 C/C++ 或 CUDA® 代码。
对层进行投影,先使用代表训练数据的数据集对层激活执行主成分分析 (PCA),然后对层的可学习参数应用线性投影。当您使用无库的 C/C++ 代码生成将网络部署到嵌入式硬件时,投影的深度神经网络的前向传导通常会更快。
将层的权重、偏置和激活量化为精度降低的缩放整数数据类型。然后,您可以从这个量化的网络中生成 C/C++、CUDA 或 HDL 代码。
为了实现 C/C++ 和 CUDA 代码生成,软件通过将卷积层的权重、偏置和激活量化为 8 位定标整数数据类型,为卷积深度神经网络生成代码。量化是通过向
codegen
(MATLAB Coder) 命令提供由calibrate
函数生成的标定结果文件来执行的。代码生成不支持由
quantize
函数生成的量化深度神经网络。
函数
App
深度网络量化器 | Quantize a deep neural network to 8-bit scaled integer data types |
主题
剪枝
- Parameter Pruning and Quantization of Image Classification Network
Use parameter pruning and quantization to reduce network size. - Prune Image Classification Network Using Taylor Scores
This example shows how to reduce the size of a deep neural network using Taylor pruning. - Prune Filters in a Detection Network Using Taylor Scores
This example shows how to reduce network size and increase inference speed by pruning convolutional filters in a you only look once (YOLO) v3 object detection network.
投影
- Compress Neural Network Using Projection
This example shows how to compress a neural network using projection and principal component analysis.
深度学习量化
- Quantization of Deep Neural Networks
Understand effects of quantization and how to visualize dynamic ranges of network convolution layers. - Quantization Workflow Prerequisites
Products required for the quantization of deep learning networks. - Prepare Data for Quantizing Networks
Supported datastores for quantization workflows.
GPU 目标的量化
- Generate INT8 Code for Deep Learning Networks (GPU Coder)
Quantize and generate code for a pretrained convolutional neural network. - Quantize Residual Network Trained for Image Classification and Generate CUDA Code
This example shows how to quantize the learnable parameters in the convolution layers of a deep learning neural network that has residual connections and has been trained for image classification with CIFAR-10 data. - Quantize Layers in Object Detectors and Generate CUDA Code
This example shows how to generate CUDA® code for an SSD vehicle detector and a YOLO v2 vehicle detector that performs inference computations in 8-bit integers for the convolutional layers. - Quantize Semantic Segmentation Network and Generate CUDA Code
Quantize Convolutional Neural Network Trained for Semantic Segmentation and Generate CUDA Code
FPGA 目标的量化
- Quantize Network for FPGA Deployment (Deep Learning HDL Toolbox)
Reduce the memory footprint of a deep neural network by quantizing the weights, biases, and activations of convolution layers to 8-bit scaled integer data types. - Classify Images on FPGA Using Quantized Neural Network (Deep Learning HDL Toolbox)
This example shows how to use Deep Learning HDL Toolbox™ to deploy a quantized deep convolutional neural network (CNN) to an FPGA. - Classify Images on FPGA by Using Quantized GoogLeNet Network (Deep Learning HDL Toolbox)
This example show how to use the Deep Learning HDL Toolbox™ to deploy a quantized GoogleNet network to classify an image.
CPU 目标的量化
- Generate int8 Code for Deep Learning Networks (MATLAB Coder)
Quantize and generate code for a pretrained convolutional neural network. - Generate INT8 Code for Deep Learning Network on Raspberry Pi (MATLAB Coder)
Generate code for deep learning network that performs inference computations in 8-bit integers.