LDL Inverse
Compute inverse of Hermitian positive definite matrix using LDL factorization
Libraries:
DSP System Toolbox /
Math Functions /
Matrices and Linear Algebra /
Matrix Inverses
Description
The LDL Inverse block computes the inverse of the Hermitian positive definite input matrix S by performing an LDL factorization.
L is a lower triangular square matrix with unity diagonal elements, D is a diagonal matrix, and L* is the Hermitian (complex conjugate) transpose of L. Only the diagonal and lower triangle of the input matrix are used, and any imaginary component of the diagonal entries is disregarded.
LDL factorization requires half the computation of Gaussian elimination (LU decomposition), and is always stable. It is more efficient than Cholesky factorization because it avoids computing the square roots of the diagonal elements.
Ports
Input
Output
Parameters
Block Characteristics
Data Types |
|
Direct Feedthrough |
|
Multidimensional Signals |
|
Variable-Size Signals |
|
Zero-Crossing Detection |
|
References
[1] Golub, G. H., and C. F. Van Loan. Matrix Computations. 3rd ed. Baltimore, MD: Johns Hopkins University Press, 1996.
Extended Capabilities
Version History
Introduced before R2006a