Heston
Create Heston
model object for Vanilla
,
Asian
, Barrier
,
DoubleBarrier
, Lookback
,
PartialLookback
, VarianceSwap
,
Touch
, DoubleTouch
,
Cliquet
, or Binary
instrument
Since R2020a
Description
Create and price a Vanilla
, Asian
,
Barrier
, DoubleBarrier
,
Lookback
, PartialLookback
,
VarianceSwap
, Touch
,
DoubleTouch
, Cliquet
, or
Binary
instrument object with a Heston
model
using this workflow:
Use
fininstrument
to create aVanilla
,Barrier
,Lookback
,PartialLookback
,Asian
,DoubleBarrier
,VarianceSwap
,Binary
,Touch
,Cliquet
, orDoubleTouch
instrument object.Use
finmodel
to specify aHeston
model object for theVanilla
,Asian
,Barrier
,DoubleBarrier
,Lookback
,PartialLookback
,VarianceSwap
,Touch
,DoubleTouch
,Cliquet
, orBinary
instrument object.Use
finpricer
to specify aFiniteDifference
,NumericalIntegration
, orFFT
pricing method for theVanilla
instrument object.Use
finpricer
to specify anAssetMonteCarlo
pricing method for theVanilla
,Asian
,Barrier
,DoubleBarrier
,Lookback
,PartialLookback
,Touch
,DoubleTouch
,Cliquet
, orBinary
instrument object.
For more information on this workflow, see Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments.
For more information on the available pricing methods for a
Vanilla
, Asian
Barrier
,
DoubleBarrier
, Lookback
,
PartialLookback
, VarianceSwap
,
Touch
, DoubleTouch
,
Cliquet
, or Binary
instrument, see Choose Instruments, Models, and Pricers.
Creation
Description
creates a HestonModelObj
= finmodel(ModelType
,'V0
'v0_value,'ThetaV
',thetav_value,'Kappa
',kappa_value,'SigmaV
',sigmav_value,'RhoSV
',rhosv_value)Black
model object by specifying
ModelType
and the required name-value pair
arguments V0
, ThetaV
,
Kappa
, SigmaV
, and
RhoSV
to set properties using required
name-value pair arguments. For example, HestonModelObj =
finmodel("Heston",'V0',0.032,'ThetaV',0.1,'Kappa',0.003,'SigmaV',0.2,'RhoSV',0.9)
creates a Heston
model object.
Input Arguments
Properties
Examples
More About
References
[1] Heston, S. L. “A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options.” The Review of Financial Studies. Vol 6, Number 2, 1993.
Version History
Introduced in R2020a