fixed.singularValueUpperBound
Syntax
Description
returns an upper bound of the largest singular value of the matrix
svdUpperBound
= fixed.singularValueUpperBound(m
,n
,max_abs_A
,regularizationParameter
)[regularizationParameter*eye(n); A]
, where A
is an
m
-by-n
matrix with
.m
>= n
Examples
Input Arguments
Algorithms
The upper bound for the largest singular value of matrix A
is
svdUpperBound = sqrt(m*n)*max(abs(A(:)))
. If there is a regularization
parameter, then the upper bound is svdUpperBound = sqrt(m*n)*max(abs(A(:))) +
abs(regularizationParameter)
[1][2][3].
References
[1] Bryan, Thomas A., Jenna L. Warren, Brenda Zhuang, and Jessica Clayton. Continuation in Part for "Systems and Methods for Design Parameter Selection." U.S. Patent Application No. 16/947, 130. 2022.
[2] Bryan, Thomas A., and Jenna L. Warren. "Systems and Methods for Design Parameter Selection." U.S. Patent Application No. 16/947, 130. 2020.
[3] Chen, Zizhong, and Jack J. Dongarra. "Condition Numbers of Gaussian Random Matrices." SIAM Journal on Matrix Analysis and Applications 27, no. 3 (July 2005): 603—620. https://doi.org/10.1137/040616413.
Extended Capabilities
Version History
Introduced in R2022b