Main Content

T-Junction (TL)

Three-way junction in a thermal liquid system

Since R2022a

Libraries:
Simscape / Fluids / Thermal Liquid / Pipes & Fittings

Description

The T-Junction (TL) block represents a three-way pipe junction with a branch line at port C connected at a 90° angle to the main pipe line, between ports A and B. You can specify a custom junction or a junction that uses a Rennels correlation or Crane correlation loss coefficient. When Loss coefficient model is set to Custom, you can specify the loss coefficients of each pipe segment for converging and diverging flows.

Flow Direction

When the Loss coefficient model parameter is Crane correlation, Rennels correlation, or Custom, the block determines each loss coefficient based on the flow configuration. The flow is converging when the flow through port C merges into the main flow. The flow is diverging when the branch flow splits from the main flow. The flow direction between A and I, the point where the branch meets the main, and B and I must be consistent for all loss coefficients to be applied. If they are not, as shown in the last two diagrams in the figure below, the losses in the junction are approximated with the main branch loss coefficient for converging or diverging flows.

Diagram showing possible flow scenarios for the T-Junction block. In a converging flow, 2 perpendicular branch flows meet at the center node. In a diverging flow, one flow enters the center node and divides into the other two perpendicular flows. For flow losses, two parallel flows meet or diverge

The block uses mode charts to determine each loss coefficient for a given flow configuration. This table describes the conditions and coefficients for each operational mode.

Flow ScenarioABCKAKBKC
Stagnant1 or last valid value1 or last valid value1 or last valid value
Diverging from node A>thresh<-ṁthresh<-ṁthresh0Kmain,divKside,div
Diverging from node B<-ṁthresh>thresh<-ṁthreshKmain,div0Kside,div
Converging to node A<-ṁthresh>thresh>thresh0Kmain,convKside,conv
Converging to node B>thresh<-ṁthresh>threshKmain,conv0Kside,conv
Converging to node C (branch) when the Loss coefficient model parameter is Crane correlation or Custom>thresh>thresh<-ṁthresh(Kmain,conv + Kside,conv)/2(Kmain,conv + Kside,conv)/20
Diverging from node C (branch) when the Loss coefficient model parameter is Crane correlation or Custom<-ṁthresh<-ṁthresh>thresh(Kmain,div + Kside,div)/2(Kmain,div + Kside,div)/20

When the Loss coefficient model parameter Rennels correlation, the values for converging to node C (branch) and diverging from node C (branch) are calculated directly.

The flow is stagnant when the mass flow rate conditions do not match any defined flow scenario. Stagnant flow is permitted at the start of the simulation, but the block does not revert to stagnant flow after it has achieved another mode. The mass flow rate threshold, which is the point at which the flow in the pipe begins to reverse direction, is

m˙thresh=Recυρ¯π4Amin,

where:

  • Rec is the Critical Reynolds number, beyond which the transitional flow regime begins.

  • ν is the fluid viscosity.

  • ρ¯ is the average fluid density.

  • Amin is the smallest cross-sectional area in the pipe junction.

Crane Correlation Coefficient Model

When you set the Loss coefficient model parameter to Crane correlation, the pipe loss coefficients, Kmain and Kside, and the pipe friction factor, fT, are calculated according to Crane [1] :

Kmain,div=Kmain,conv=20fT,main,

Kside,div=Kside,conv=60fT,side.

In contrast to the custom junction type, the standard junction loss coefficient is the same for both converging and diverging flows. KA, KB, and KC are then calculated in the same manner as custom junctions.

Nominal size (mm)51015202532405072.5100125150225350609.5
Friction factor, fT.035.029.027.025.023.022.021.019.018.017.016.015.014.013.012

Rennels Correlation Coefficient Model

When you set the Loss coefficient model parameter to Rennels correlation, the block calculates the pipe loss coefficients according to [2].

Diverging Flow on Main Branch

The main branch diverging loss coefficient is

Kmain,div=0.620.98m˙1m˙2+0.36(m˙1m˙2)2+0.03(m˙2m˙1)6,

where:

  • m˙1 is the mass flow rate at the inflow of the main branch.

  • m˙2 is the mass flow rate at the outflow of the main branch.

The value of Kmain,div saturates when m˙2/m˙1 is equal to the value of the Minimum valid flow ratio for coefficient calculation parameter.

The side branch diverging loss coefficient is

Kside,div=(0.811.13m˙1m˙3+(m˙1m˙3)2)(d3d1)4+1.12d3d11.08(d3d1)3+K*,

where

  • m˙3 is the mass flow rate at the outflow of the side branch.

  • d1 is the diameter of the main branch.

  • d3 is the diameter of the side branch.

  • K*=0.571.07(rd3)1/22.13rd3+8.24(rd3)3/28.48(rd3)2+2.90(rd3)5/2.

  • r is the value of the Junction radius of curvature parameter.

The value of Kside,div saturates when m˙3/m˙1 is equal to the value of the Minimum valid flow ratio for coefficient calculation parameter.

Converging Flow on Main Branch

The main branch converging loss coefficient is

Kmain,conv=(m˙1m˙2)20.952CxC(m˙1m˙21)2CM((m˙1m˙2)2m˙1m˙2),

where

CM=0.23+1.46(rd3)2.75(rd3)2+1.65(rd3)3CxC=0.08+0.56(rd3)1.75(rd3)2+1.83(rd3)3

The value of Kmain,conv saturates when m˙2/m˙1 is equal to the value of the Minimum valid flow ratio for coefficient calculation parameter.

The side branch converging loss coefficient is

Kside,conv=(2CyC1)+(d3d1)4[2(CxC1)+2(2CxCCM)m˙1m˙30.92(m˙1m˙3)2],

where:

CyC=10.25(d3d1)1.3[0.11rd30.65(rd3)+0.83(rd3)3](d3d1)2.

The value of Kside,conv saturates when m˙3/m˙1 is equal to the value of the Minimum valid flow ratio for coefficient calculation parameter.

Converging or Diverging flow from Side Branch

The loss coefficient when the flow is converging to the side branch is

Kconvtoside=(0.811.16rd+0.5rd)(m˙1m˙2)2(0.951.65rd)m˙1m˙2+1.341.69rd,

where d is the diameter of the side branch. The value of Kconv to side saturates when m˙2/m˙1 is equal to the value of the Minimum valid flow ratio for coefficient calculation parameter.

The loss coefficient when the flow is diverging from the side branch is

Kdivfromside=0.59(m˙1m˙2)2+(1.181.84rd+1.16rd)m˙1m˙20.68+1.04rd1.16rd.

The value of Kdiv from side saturates when m˙2/m˙1 is equal to the value of the Minimum valid flow ratio for coefficient calculation parameter.

Custom T-Junction

When you set the Loss coefficient model parameter to Custom, the block calculates the pipe loss coefficient at each port, K, based on the user-defined loss parameters for converging and diverging flow and mass flow rate at each port. You must specify Kmain,conv, Kmain,div, Kside,conv, and Kside,div as the Main branch converging loss coefficient, Main branch diverging loss coefficient, Side branch converging loss coefficient, and Side branch diverging loss coefficient parameters, respectively.

Constant Coefficients T-Junction

When you set the Loss coefficient model parameter to Constant Coefficients, the block models the junction as a composite component of three Local Resistance (TL) blocks joined at a center node. When the block uses this setting, it does not use mode charts. Use this option if your model operates at nominal conditions and does not require high fidelity.

Mass and Momentum Balance

The block conserves mass in the junction such that

m˙A+m˙B+m˙C=0.

The block calculates the flow through the pipe junction using the momentum conservation equations between ports A, B, and C:

pApI=IA+KA2ρ¯Amain2m˙Am˙A2+m˙thresh2pBpI=IB+KB2ρ¯Amain2m˙Bm˙B2+m˙thresh2pCpI=IC+KC2ρ¯Aside2m˙Cm˙C2+m˙thresh2

where I represents the fluid inertia, and

IA=m¨AπAsideAmainIB=m¨BπAsideAmainIC=m¨CπAmainAside

Amain is the Main branch area (A-B) parameter and Aside is the Side branch area (A-C, B-C) parameter.

Energy Balance

The block balances energy such that

ϕA+ϕB+ϕC=0,

where:

  • ϕA is the energy flow rate at port A.

  • ϕB is the energy flow rate at port B.

  • ϕC is the energy flow rate at port C.

Variables

To set the priority and initial target values for the block variables prior to simulation, use the Initial Targets section in the block dialog box or Property Inspector. For more information, see Set Priority and Initial Target for Block Variables.

Nominal values provide a way to specify the expected magnitude of a variable in a model. Using system scaling based on nominal values increases the simulation robustness. Nominal values can come from different sources, one of which is the Nominal Values section in the block dialog box or Property Inspector. For more information, see Modify Nominal Values for a Block Variable.

Ports

Conserving

expand all

Thermal liquid conserving port associated with the liquid entrance or exit of the junction.

Thermal liquid conserving port associated with the liquid entrance or exit of the junction.

Thermal liquid conserving port associated with the liquid entrance or exit of the junction.

Parameters

expand all

Area of connecting pipe between ports A and B.

Area of connecting pipe between ports A and C and between ports B and C.

The junction loss coefficient model. Set this parameter to Custom to specify individual diverging and converging loss coefficients for each flow path segment.

Time scale of the smoothing function. Use this parameter to ensure smooth transitions by tuning the block dynamic behavior during flow reversals.

Dependencies

To enable this parameter, set Loss coefficient model to either Crane correlation, Rennels correlation, or Custom.

Upper Reynolds number limit for laminar flow through the junction.

Reynolds number that the block uses to calculate the threshold beneath which the flow is stagnant. The block uses this threshold to reduce numerical chatter during simulation. This parameter does not have a physical meaning, but must be small in comparison to the expected mass flow rate values.

Dependencies

To enable this parameter, set Loss coefficient model to either Crane correlation, Rennels correlation, or Custom.

Loss coefficient for pressure loss calculations between ports A and B for converging flow.

Dependencies

To enable this parameter, set Loss coefficient model to Custom.

Loss coefficient for pressure loss calculations between ports A and B for diverging flow.

Dependencies

To enable this parameter, set Loss coefficient model to Custom.

Loss coefficient for pressure loss calculations between port C and the main line for converging flow.

Dependencies

To enable this parameter, set Loss coefficient model to Custom.

Loss coefficient for pressure loss calculations between port C and the main line for diverging flow.

Dependencies

To enable this parameter, set Loss coefficient model to Custom.

Radius of the curvature of the junction used to calculate the loss coefficients when Loss coefficient model is set to Rennels correlation.

Dependencies

To enable this parameter, set Loss coefficient model to Rennels correlation.

Minimum value for any flow ratio that the block uses to calculate loss coefficients. If the flow ratio is below this limit, it saturates at this value. The block uses this parameter to limit the impact of differences in flow magnitude between branches and to increase numerical stability if one branch has significantly less flow than others.

Only adjust this setting if your model has numerical stability problems.

Dependencies

To enable this parameter, set Loss coefficient model to Rennels correlation.

Continuous smoothing factor that introduces a layer of gradual change to the flow response when it approaches the limit specified by the Minimum valid flow ratio for coefficient calculation parameter. Set this parameter to a nonzero value less than one to increase the stability of your simulation.

Only adjust this setting if your model has numerical stability problems.

Dependencies

To enable this parameter, set Loss coefficient model to Rennels correlation.

Whether to model fluid inertia, which lowers the risk of a block numerical issue during flow reversals. Avoid modeling fluid inertia unless it is numerically necessary, because it increases the computational cost.

Dependencies

To enable this parameter, set Loss coefficient model to Rennels correlation.

Loss coefficient for flow along branch A.

Dependencies

To enable this parameter, set Loss coefficient model to Constant Coefficients.

Loss coefficient for flow along branch B.

Dependencies

To enable this parameter, set Loss coefficient model to Constant Coefficients.

Loss coefficient for flow along branch C.

Dependencies

To enable this parameter, set Loss coefficient model to Constant Coefficients.

References

[1] Crane Co. Flow of Fluids Through Valves, Fittings, and Pipe TP-410. Crane Co., 1981.

[2] Rennels, D. C., & Hudson, H. M. Pipe flow: A practical and comprehensive guide. Hoboken, N.J: John Wiley & Sons., 2012.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Version History

Introduced in R2022a

expand all

See Also