roe
(To be removed) Estimate recursively output-error models (IIR-filters)
Note
roe will be removed in a future release. Use recursiveOE instead.
Syntax
thm = roe(z,nn,adm,adg) [thm,yhat,P,phi,psi] = roe(z,nn,adm,adg,th0,P0,phi0,psi0)
Description
The parameters of the output-error model structure
are estimated using a recursive prediction error method.
The input-output data are contained in z, which is either an
iddata object or a matrix z = [y u] where
y and u are column vectors.
nn is given as
nn = [nb nf nk]
where nb and nf are the orders of the
output-error model, and nk is the delay. Specifically,
See What Are Polynomial Models? for more information.
Only single-input, single-output models are handled by roe. Use
rpem for the multiple-input case.
The estimated parameters are returned in the matrix thm. The
kth row of thm contains the parameters
associated with time k; that is, they are based on the data in the
rows up to and including row k in z.
Each row of thm contains the estimated parameters in the following
order.
thm(k,:) = [b1,...,bnb,f1,...,fnf]
yhat is the predicted value of the output, according to the current
model; that is, row k of yhat contains the
predicted value of y(k) based on all past data.
The actual algorithm is selected with the two arguments adg and
adm. These are described under rarx.
The input argument th0 contains the initial value of the
parameters, a row vector consistent with the rows of thm. The default
value of th0 is all zeros.
The arguments P0 and P are the initial and final
values, respectively, of the scaled covariance matrix of the parameters. The default
value of P0 is 104 times the unit matrix.
The arguments phi0, psi0, phi,
and psi contain initial and final values of the data vector and the
gradient vector, respectively. The sizes of these depend on the chosen model orders. The
normal choice of phi0 and psi0 is to use the
outputs from a previous call to roe with the same model orders. (This
call could be a dummy call with default input arguments.) The default values of
phi0 and psi0 are all zeros.
Note that the function requires that the delay nk be larger than
0. If you want nk = 0, shift the input
sequence appropriately and use nk = 1.
Algorithms
The general recursive prediction error algorithm (11.44) of Ljung (1999) is implemented. See also Recursive Algorithms for Online Parameter Estimation.
Version History
Introduced before R2006a
See Also
nkshift | recursiveOE | rpem | rplr