Main Content

本页对应的英文页面已更新,但尚未翻译。 若要查看最新内容,请点击此处访问英文页面。

使用盲反卷积算法对图像进行去模糊

此示例说明如何使用盲反卷积对图像进行去模糊。当不知道关于失真(模糊和噪声)的信息时,使用盲反卷积算法很有效。该算法同时还原图像和点扩散函数 (PSF)。每次迭代中都使用加速阻尼 Richardson-Lucy 算法。附加的光学系统(例如照相机)特征可以用作输入参数,这有助于提高图像还原的质量。PSF 约束可以通过用户指定的函数传递。

步骤 1:读取图像

将灰度图像读入工作区。deconvblind 函数可以处理任何维度的数组。

I = imread('cameraman.tif');
figure;imshow(I);title('Original Image');
text(size(I,2),size(I,1)+15, ...
    'Image courtesy of Massachusetts Institute of Technology', ...
    'FontSize',7,'HorizontalAlignment','right');

步骤 2:仿真模糊效果

模拟模糊的真实图像(例如,因为照相机移动或失焦而模糊)。此示例通过使用高斯滤波器对真实图像进行卷积来模拟模糊效果(使用 imfilter)。然后,高斯滤波器表示点扩散函数 PSF

PSF = fspecial('gaussian',7,10);
Blurred = imfilter(I,PSF,'symmetric','conv');
imshow(Blurred)
title('Blurred Image')

步骤 3:使用不同大小的 PSF 还原模糊图像

为了说明了解真实 PSF 大小的重要性,此示例执行三次还原。对于每次还原,PSF 重构都从均匀数组(由 1 组成的数组)开始。

第一次还原(J1P1)使用大小过小的数组 UNDERPSF 获得 PSF 的初始估计值。在每个维度上,UNDERPSF 数组的大小都比真实 PSF 短 4 个像素。

UNDERPSF = ones(size(PSF)-4);
[J1,P1] = deconvblind(Blurred,UNDERPSF);
imshow(J1)
title('Deblurring with Undersized PSF')

第二次还原(J2P2)使用由 1 组成的数组 OVERPSF 来获得初始 PSF,该初始 PSF 在每个维度上都比真实 PSF 长 4 个像素。

OVERPSF = padarray(UNDERPSF,[4 4],'replicate','both');
[J2,P2] = deconvblind(Blurred,OVERPSF);
imshow(J2)
title('Deblurring with Oversized PSF')

第三次还原(J3P3)使用由 1 组成的数组 INITPSF 获得与真实 PSF 大小完全相同的初始 PSF。

INITPSF = padarray(UNDERPSF,[2 2],'replicate','both');
[J3,P3] = deconvblind(Blurred,INITPSF);
imshow(J3)
title('Deblurring with INITPSF')

步骤 4:分析还原的 PSF

所有三个还原还会生成一个 PSF。下列各图显示对重构的 PSF 的分析如何有助于估计初始 PSF 的正确大小。在真实的 PSF(一个高斯滤波器)中,最大值在中心(白色),在边界处(黑色)减小。

figure;
subplot(2,2,1)
imshow(PSF,[],'InitialMagnification','fit')
title('True PSF')
subplot(222)
imshow(P1,[],'InitialMagnification','fit')
title('Reconstructed Undersized PSF')
subplot(2,2,3)
imshow(P2,[],'InitialMagnification','fit')
title('Reconstructed Oversized PSF')
subplot(2,2,4)
imshow(P3,[],'InitialMagnification','fit')
title('Reconstructed true PSF')

在第一次还原中重构的 PSF P1 显然无法放入限定的大小之内。它在边界上有很强的信号变化。相对于模糊图像 Blurred,对应的图像 J1 在清晰度上并未显示出任何改进。

在第二个还原中重构的 PSF (P2) 在边缘处变得非常平滑。这意味着还原可以处理大小较小的 PSF。对应的图像 J2 显示消除了一些模糊,但被振铃效应严破坏。

最后,在第三个还原中重构的 PSF P3 在某种程度上介于 P1P2 之间。数组 P3 非常像真实的 PSF。对应的图像 J3 显示出显著的改进;然而,它仍然被振铃效应破坏。

步骤 5:改进还原

还原的图像 J3 中的振铃效应发生在图像中强度对比强烈的区域和图像边界上。此示例说明如何通过指定加权函数来减少振铃效应。该算法根据 WEIGHT 数组对每个像素进行加权,同时还原图像和 PSF。在我们的示例中,我们首先使用边缘函数找到“较高锐度”的像素。通过反复试验,我们确定理想的阈值水平是 0.08。

WEIGHT = edge(Blurred,'sobel',.08);

为了扩大区域,我们使用 imdilate 并传入结构元素 se

se = strel('disk',2);
WEIGHT = 1-double(imdilate(WEIGHT,se));

靠近边界的像素也被赋值为 0。

WEIGHT([1:3 end-(0:2)],:) = 0;
WEIGHT(:,[1:3 end-(0:2)]) = 0;
figure
imshow(WEIGHT)
title('Weight Array')

调用 deconvblind 还原图像时加上 WEIGHT 数组并增加迭代次数 (30)。几乎所有振铃效应都被消除。

[J,P] = deconvblind(Blurred,INITPSF,30,[],WEIGHT);
imshow(J)
title('Deblurred Image')

步骤 6:对 PSF 还原使用附加约束

此示例说明如何对 PSF 指定附加约束。以下函数 FUN 返回修正 PSF 数组,deconvblind 将该数组用于下一次迭代。

在此示例中,FUN 会修正 PSF,分别在每个维度中裁去 P1P2 个像素,然后用零回填数组以恢复其原始大小。此运算不会更改 PSF 中心的值,但实际上会将 PSF 大小减小 2*P12*P2 个像素。

P1 = 2;
P2 = 2;
FUN = @(PSF) padarray(PSF(P1+1:end-P1,P2+1:end-P2),[P1 P2]);

匿名函数 FUN 最后会传入 deconvblind 中。有关向函数 FUN 提供附加参数的信息,请参阅 MATLAB Mathematics 文档中的 Parameterizing Functions 一节。

在此示例中,初始 PSF OVERPSF 的大小比真实 PSF 大 4 个像素。在 FUN 中将 P1 = 2 和 P2 = 2 设置为参数,实际上使 OVERPSF 中有效空间的大小与真实 PSF 相同。因此,结果(JFPF)与步骤 4 中的结果 JP 类似,该步骤中执行卷积时使用了合适大小的 PSF,但没用调用 FUN

[JF,PF] = deconvblind(Blurred,OVERPSF,30,[],WEIGHT,FUN);
imshow(JF)
title('Deblurred Image')

如果我们使用了过大的初始 PSF OVERPSF 而没有使用约束函数 FUN,得到的图像将类似于在步骤 3 中获得的不尽如人意的结果 J2

请注意,在 FUN 之前的任何未指定参数都可以直接省略,例如此示例中的 DAMPARREADOUT,不需要补上占位符 ([])。

另请参阅

|

相关主题