Main Content

Find Maximum Value with MapReduce

This example shows how to find the maximum value of a single variable in a data set using mapreduce. It demonstrates the simplest use of mapreduce since there is only one key and minimal computation.

Prepare Data

Create a datastore using the airlinesmall.csv data set. This 12-megabyte data set contains 29 columns of flight information for several airline carriers, including arrival and departure times. In this example, select ArrDelay (flight arrival delay) as the variable of interest.

ds = tabularTextDatastore('airlinesmall.csv', 'TreatAsMissing', 'NA');
ds.SelectedVariableNames = 'ArrDelay';

The datastore treats 'NA' values as missing, and replaces the missing values with NaN values by default. Additionally, the SelectedVariableNames property allows you to work with only the selected variable of interest, which you can verify using preview.

preview(ds)
ans=8×1 table
    ArrDelay
    ________

        8   
        8   
       21   
       13   
        4   
       59   
        3   
       11   

Run MapReduce

The mapreduce function requires a map function and a reduce function as inputs. The mapper receives blocks of data and outputs intermediate results. The reducer reads the intermediate results and produces a final result.

In this example, the mapper finds the maximum arrival delay in each block of data. The mapper then stores these maximum values as the intermediate values associated with the key 'PartialMaxArrivalDelay'.

Display the map function file.

function maxArrivalDelayMapper (data, info, intermKVStore)
  partMax = max(data.ArrDelay);
  add(intermKVStore, 'PartialMaxArrivalDelay',partMax);
end

The reducer receives a list of the maximum arrival delays for each block and finds the overall maximum arrival delay from the list of values. mapreduce only calls this reducer once, since the mapper only adds a single unique key. The reducer uses add to add a final key-value pair to the output.

Display the reduce function file.

function maxArrivalDelayReducer(intermKey, intermValIter, outKVStore)
  % intermKey is 'PartialMaxArrivalDelay'. intermValIter is an iterator of
  % all values that has the key 'PartialMaxArrivalDelay'.
  maxVal = -Inf;
  while hasnext(intermValIter)
    maxVal = max(getnext(intermValIter), maxVal);
  end
  % The key-value pair added to outKVStore will become the output of mapreduce 
  add(outKVStore,'MaxArrivalDelay',maxVal);
end

Use mapreduce to apply the map and reduce functions to the datastore, ds.

maxDelay = mapreduce(ds, @maxArrivalDelayMapper, @maxArrivalDelayReducer);
********************************
*      MAPREDUCE PROGRESS      *
********************************
Map   0% Reduce   0%
Map  16% Reduce   0%
Map  32% Reduce   0%
Map  48% Reduce   0%
Map  65% Reduce   0%
Map  81% Reduce   0%
Map  97% Reduce   0%
Map 100% Reduce   0%
Map 100% Reduce 100%

mapreduce returns a datastore, maxDelay, with files in the current folder.

Read the final result from the output datastore, maxDelay.

readall(maxDelay)
ans=1×2 table
            Key             Value  
    ___________________    ________

    {'MaxArrivalDelay'}    {[1014]}

See Also

|

Related Topics