EditField
Edit field UI component
Description
An edit field UI component allows an app user to enter text in an app. Use the
EditField
object to modify the appearance and behavior of an edit field
after you create it.
Creation
Create an edit field in an app using the uieditfield
function.
Properties
Text
Value
— Text in edit field
''
(default) | character vector | string scalar
Text in the edit field, specified as a character vector or string scalar. MATLAB® displays the text as a single line. If you want to allow multiple lines of text, use a text area component instead of an edit field.
Example: 'Hello world'
CharacterLimits
— Minimum and maximum number of characters
[0 Inf]
(default) | two-element numeric array
Minimum and maximum number of characters of edit field text, specified as a
two-element numeric array. The first value must be less than or equal to the second
value, and both values must be nonnegative. To specify no upper limit, set the second
array element to Inf
.
If you change CharacterLimits
such that the number of
characters in Value
falls outside of the new limits, MATLAB resets Value
to ''
. For example,
suppose CharacterLimits
is [0 5]
and
Value
is 'Hello'
. If you change
CharacterLimits
to [6 Inf]
, then MATLAB sets Value
to ''
.
If you specify a lower limit that is greater than 0, it is still possible for
Value
to be ''
in these settings:
The edit field is created with the default value and the app user has not yet entered a valid value within the range of
CharacterLimits
.The
Value
property resets after you changeCharacterLimits
, as described above.
Example: [0 3]
Example: [5 5]
Example: [2 Inf]
InputType
— Valid text content
'text'
(default) | 'letters'
| 'digits'
| 'alphanumerics'
Valid text content, specified as one of these values:
'text'
— Any text is valid.'letters'
— Text must consist entirely of letters.'digits'
— Text must consist entirely of digits.'alphanumerics'
— Text must consist entirely of letters and digits.
Placeholder
— Placeholder text in edit field
''
(default) | character vector | string scalar
Placeholder text in the edit field, specified as a character vector or string
scalar. The placeholder provides a short hint to describe the expected input. The text
shows only when the Value
property is ''
.
Example: 'Enter text'
HorizontalAlignment
— Horizontal alignment of text within edit field
'left'
(default) | 'right'
| 'center'
Alignment of text within the edit field, specified as 'left'
,
'right'
, or 'center'
. The alignment affects
the display as the app user edits the edit field and how MATLAB displays the text in the app.
Font and Color
FontName
— Font name
system supported font name
Font name, specified as a system supported font name. The default font depends on the specific operating system and locale.
If the specified font is not available, then MATLAB uses the best match among the fonts available on the system where the app is running.
Example: 'Arial'
FontSize
— Font size
positive number
Font size, specified as a positive number. The units of measurement are pixels. The default font size depends on the specific operating system and locale.
Example: 14
FontWeight
— Font weight
'normal'
(default) | 'bold'
Font weight, specified as one of these values:
'normal'
— Default weight as defined by the particular font'bold'
— Thicker character outlines than'normal'
Not all fonts have a bold font weight. For fonts that do not, specifying
'bold'
results in the normal font weight.
FontAngle
— Font angle
'normal'
(default) | 'italic'
Font angle, specified as 'normal'
or 'italic'
.
Not all fonts have an italic font angle. For fonts that do not, specifying
'italic'
results in the normal font angle.
FontColor
— Font color
[0 0 0]
(default) | RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...
Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options listed in the table.
RGB triplets and hexadecimal color codes are useful for specifying custom colors.
An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range
[0,1]
; for example,[0.4 0.6 0.7]
.A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (
#
) followed by three or six hexadecimal digits, which can range from0
toF
. The values are not case sensitive. Thus, the color codes"#FF8800"
,"#ff8800"
,"#F80"
, and"#f80"
are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
"red" | "r" | [1 0 0] | "#FF0000" | |
"green" | "g" | [0 1 0] | "#00FF00" | |
"blue" | "b" | [0 0 1] | "#0000FF" | |
"cyan"
| "c" | [0 1 1] | "#00FFFF" | |
"magenta" | "m" | [1 0 1] | "#FF00FF" | |
"yellow" | "y" | [1 1 0] | "#FFFF00" | |
"black" | "k" | [0 0 0] | "#000000" | |
"white" | "w" | [1 1 1] | "#FFFFFF" |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | "#0072BD" | |
[0.8500 0.3250 0.0980] | "#D95319" | |
[0.9290 0.6940 0.1250] | "#EDB120" | |
[0.4940 0.1840 0.5560] | "#7E2F8E" | |
[0.4660 0.6740 0.1880] | "#77AC30" | |
[0.3010 0.7450 0.9330] | "#4DBEEE" | |
[0.6350 0.0780 0.1840] | "#A2142F" |
BackgroundColor
— Background color
[1 1 1]
(default) | RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...
Background color, specified as an RGB triplet, a hexadecimal color code, or one of the color options listed in the table.
RGB triplets and hexadecimal color codes are useful for specifying custom colors.
An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range
[0,1]
; for example,[0.4 0.6 0.7]
.A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (
#
) followed by three or six hexadecimal digits, which can range from0
toF
. The values are not case sensitive. Thus, the color codes"#FF8800"
,"#ff8800"
,"#F80"
, and"#f80"
are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
"red" | "r" | [1 0 0] | "#FF0000" | |
"green" | "g" | [0 1 0] | "#00FF00" | |
"blue" | "b" | [0 0 1] | "#0000FF" | |
"cyan"
| "c" | [0 1 1] | "#00FFFF" | |
"magenta" | "m" | [1 0 1] | "#FF00FF" | |
"yellow" | "y" | [1 1 0] | "#FFFF00" | |
"black" | "k" | [0 0 0] | "#000000" | |
"white" | "w" | [1 1 1] | "#FFFFFF" |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | "#0072BD" | |
[0.8500 0.3250 0.0980] | "#D95319" | |
[0.9290 0.6940 0.1250] | "#EDB120" | |
[0.4940 0.1840 0.5560] | "#7E2F8E" | |
[0.4660 0.6740 0.1880] | "#77AC30" | |
[0.3010 0.7450 0.9330] | "#4DBEEE" | |
[0.6350 0.0780 0.1840] | "#A2142F" |
Interactivity
Visible
— State of visibility
'on'
(default) | on/off logical value
State of visibility, specified as 'on'
or 'off'
,
or as numeric or logical 1
(true
) or
0
(false
). A value of 'on'
is equivalent to true
, and 'off'
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
'on'
— Display the object.'off'
— Hide the object without deleting it. You still can access the properties of an invisible UI component.
To make your app start faster, set the Visible
property to
'off'
for all UI components that do not need to appear at
startup.
Editable
— Whether edit field is editable
'on'
(default) | on/off logical value
Whether the edit field is editable, specified as 'on'
or
'off'
, or as numeric or logical 1
(true
) or 0
(false
). A
value of 'on'
is equivalent to true
, and
'off'
is equivalent to false
. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off
logical value of type matlab.lang.OnOffSwitchState
.
Use this property in combination with the Enable
property
value to determine if and how the component responds to app user input:
To make the edit field editable and the associated callback triggerable, set both the
Enable
property and theEditable
property values to'on'
.To make the edit field uneditable, but the text easy to read, set the
Enable
property value to'on'
and theEditable
property value to'off'
.To make the edit field uneditable and the text dimmed, set both properties to
'off'
.
Enable
— Operational state of edit field
'on'
(default) | on/off logical value
Operational state of the edit field, specified as 'on'
or
'off'
, or as numeric or logical 1
(true
) or 0
(false
). A
value of 'on'
is equivalent to true
, and
'off'
is equivalent to false
. Thus, you can
use the value of this property as a logical value. The value is stored as an on/off
logical value of type matlab.lang.OnOffSwitchState
.
Use this property in combination with the Editable
property
value to determine if and how the component responds to app user input:
To make the edit field editable and the associated callback triggerable, set both the
Enable
property and theEditable
property values to'on'
.To make the edit field uneditable, but the text easy to read, set the
Enable
property value to'on'
and theEditable
property value to'off'
.To make the edit field uneditable and the text dimmed, set both properties to
'off'
.
Tooltip
— Tooltip
''
(default) | character vector | cell array of character vectors | string array | 1-D categorical array
Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D categorical array. Use this property to display a message when the user hovers the pointer over the component at run time. The tooltip displays even when the component is disabled. To display multiple lines of text, specify a cell array of character vectors or a string array. Each element in the array becomes a separate line of text. If you specify this property as a categorical array, MATLAB uses the values in the array, not the full set of categories.
ContextMenu
— Context menu
empty GraphicsPlaceholder
array (default) | ContextMenu
object
Context menu, specified as a ContextMenu
object created using the uicontextmenu
function. Use this property to display a context menu when
you right-click on a component.
Position
Position
— Location and size of edit field
[100 100 100 22]
(default) | [left bottom width height]
Location and size of the edit field relative to the parent,
specified as the vector [left bottom width height]
.
This table describes each element in the vector.
Element | Description |
---|---|
left | Distance from the inner left edge of the parent container to the outer left edge of the edit field |
bottom | Distance from the inner bottom edge of the parent container to the outer bottom edge of the edit field |
width | Distance between the right and left outer edges of the edit field |
height | Distance between the top and bottom outer edges of the edit field |
All measurements are in pixel units.
The Position
values are relative to the
drawable area of the parent container. The drawable area is the area
inside the borders of the container and does not include the area occupied by decorations such
as a menu bar or title.
Example: [150 130 100 22]
InnerPosition
— Inner location and size of edit field
[100 100 100 22]
(default) | [left bottom width height]
Inner location and size of the edit field, specified as [left
bottom width height]
. Position values are relative to the
parent container. All measurements are in pixel units. This property
value is identical to the Position
property.
OuterPosition
— Outer location and size of edit field
[100 100 100 22]]
(default) | [left bottom width height]
This property is read-only.
Outer location and size of edit field returned as [left
bottom width height]
. Position values are relative to the
parent container. All measurements are in pixel units. This property
value is identical to the Position
property.
Layout
— Layout options
empty LayoutOptions
array (default) | GridLayoutOptions
object
Layout options, specified as a
GridLayoutOptions
object. This property specifies options for
components that are children of grid layout containers. If the component is not a
child of a grid layout container (for example, it is a child of a figure or panel),
then this property is empty and has no effect. However, if the component is a child of
a grid layout container, you can place the component in the desired row and column of
the grid by setting the Row
and Column
properties on the GridLayoutOptions
object.
For example, this code places an edit field in the third row and second column of its parent grid.
g = uigridlayout([4 3]); ef = uieditfield(g); ef.Layout.Row = 3; ef.Layout.Column = 2;
To make the edit field span multiple rows or columns, specify the
Row
or Column
property as a two-element
vector. For example, this edit field spans columns 2
through
3
:
ef.Layout.Column = [2 3];
Callbacks
ValueChangedFcn
— Value changed callback
''
(default) | function handle | cell array | character vector
Value changed callback, specified as one of these values:
A function handle.
A cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
A character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.
The callback executes when the user changes text in the edit field and either presses Enter or clicks outside the edit field. It does not execute if the edit field value changes programmatically.
This callback function can access specific information about the user’s interaction
with the edit field. MATLAB passes this information in a ValueChangedData
object as the second argument to your callback function.
In App Designer, the argument is called event
. You can query the
object properties using dot notation. For example,
event.PreviousValue
returns the previous value of the edit field.
The ValueChangedData
object is not available to
callback functions specified as character vectors.
The following table lists the properties of the ValueChangedData
object.
Property | Value |
---|---|
Value | Value of edit field after app user’s most recent interaction with it |
PreviousValue | Value of edit field before app user’s most recent interaction with it |
Source | Component that executes the callback |
EventName | 'ValueChanged' |
For more information about writing callbacks, see Callbacks in App Designer.
ValueChangingFcn
— Value changing callback
''
(default) | function handle | cell array | character vector
Value changing callback, specified as one of these values:
A function handle.
A cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
A character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.
This callback executes as follows:
As the user types in the edit field, the callback executes repeatedly.
When the user presses Enter, the callback executes.
If the edit field value changes programmatically, then the callback does not execute.
This callback function can access specific information about the user’s
interaction with the edit field. MATLAB passes this information in a ValueChangingData
object
as the second argument to your callback function. In App Designer, the argument is
called event
. You can query the object properties using dot
notation. For example, event.Value
is the value in the edit field
that triggered the execution of the callback. The ValueChangingData
object is not available to callback functions specified as character vectors.
Here are the properties of the ValueChangingData
object:
Property | Description |
---|---|
Value | Value that triggered the execution of the callback |
Source | Component that executes the callback |
EventName | 'ValueChanging' |
The Value
property of the EditField
object is not updated until the user presses the
Enter key. However, you can get the text that the user is typing
before they press Enter by querying the Value
property of the ValueChangingData
object.
Note
Avoid updating the Value
property of the
EditField
object from within its own
ValueChangingFcn
callback, as this might result in unexpected
behavior. To update the edit field value in response to user input, use a
ValueChangedFcn
callback instead.
For more information about writing callbacks, see Callbacks in App Designer.
CreateFcn
— Creation function
''
(default) | function handle | cell array | character vector
Object creation function, specified as one of these values:
Function handle.
Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.
For more information about specifying a callback as a function handle, cell array, or character vector, see Callbacks in App Designer.
This property specifies a callback function to execute when MATLAB creates the object. MATLAB initializes all property values before executing the CreateFcn
callback. If you do not specify the CreateFcn
property, then MATLAB executes a default creation function.
Setting the CreateFcn
property on an existing component has no effect.
If you specify this property as a function handle or cell array, you can access the object that is being created using the first argument of the callback function. Otherwise, use the gcbo
function to access the object.
DeleteFcn
— Deletion function
''
(default) | function handle | cell array | character vector
Object deletion function, specified as one of these values:
Function handle.
Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.
For more information about specifying a callback as a function handle, cell array, or character vector, see Callbacks in App Designer.
This property specifies a callback function to execute when MATLAB deletes the object. MATLAB executes the DeleteFcn
callback before destroying the
properties of the object. If you do not specify the DeleteFcn
property, then MATLAB executes a default deletion function.
If you specify this property as a function handle or cell array, you can access the
object that is being deleted using the first argument of the callback function.
Otherwise, use the gcbo
function to access the
object.
Callback Execution Control
Interruptible
— Callback interruption
'on'
(default) | on/off logical value
Callback interruption, specified as 'on'
or 'off'
, or as
numeric or logical 1
(true
) or
0
(false
). A value of 'on'
is equivalent to true
, and 'off'
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
This property determines if a running callback can be interrupted. There are two callback states to consider:
The running callback is the currently executing callback.
The interrupting callback is a callback that tries to interrupt the running callback.
MATLAB determines callback interruption behavior whenever it executes a command that
processes the callback queue. These commands include drawnow
, figure
, uifigure
, getframe
, waitfor
, and pause
.
If the running callback does not contain one of these commands, then no interruption occurs. MATLAB first finishes executing the running callback, and later executes the interrupting callback.
If the running callback does contain one of these commands, then the
Interruptible
property of the object that owns the running
callback determines if the interruption occurs:
If the value of
Interruptible
is'off'
, then no interruption occurs. Instead, theBusyAction
property of the object that owns the interrupting callback determines if the interrupting callback is discarded or added to the callback queue.If the value of
Interruptible
is'on'
, then the interruption occurs. The next time MATLAB processes the callback queue, it stops the execution of the running callback and executes the interrupting callback. After the interrupting callback completes, MATLAB then resumes executing the running callback.
Note
Callback interruption and execution behave differently in these situations:
If the interrupting callback is a
DeleteFcn
,CloseRequestFcn
, orSizeChangedFcn
callback, then the interruption occurs regardless of theInterruptible
property value.If the running callback is currently executing the
waitfor
function, then the interruption occurs regardless of theInterruptible
property value.If the interrupting callback is owned by a
Timer
object, then the callback executes according to schedule regardless of theInterruptible
property value.
BusyAction
— Callback queuing
'queue'
(default) | 'cancel'
Callback queuing, specified as 'queue'
or 'cancel'
. The BusyAction
property determines how MATLAB handles the execution of interrupting callbacks. There are two callback states to consider:
The running callback is the currently executing callback.
The interrupting callback is a callback that tries to interrupt the running callback.
The BusyAction
property determines callback queuing behavior only
when both of these conditions are met:
Under these conditions, the BusyAction
property of the
object that owns the interrupting callback determines how MATLAB handles the interrupting callback. These are possible values of the
BusyAction
property:
'queue'
— Puts the interrupting callback in a queue to be processed after the running callback finishes execution.'cancel'
— Does not execute the interrupting callback.
BeingDeleted
— Deletion status
on/off logical value
This property is read-only.
Deletion status, returned as an on/off logical value of type matlab.lang.OnOffSwitchState
.
MATLAB sets the BeingDeleted
property to
'on'
when the DeleteFcn
callback begins
execution. The BeingDeleted
property remains set to
'on'
until the component object no longer exists.
Check the value of the BeingDeleted
property to verify that the object is not about to be deleted before querying or modifying it.
Parent/Child
Parent
— Parent container
Figure
object (default) | Panel
object | Tab
object | ButtonGroup
object | GridLayout
object
Parent container, specified as a Figure
object
created using the uifigure
function, or one of its child
containers: Tab
, Panel
, ButtonGroup
, or GridLayout
. If no container is specified, MATLAB calls the uifigure
function to create a new Figure
object that serves as the parent container.
HandleVisibility
— Visibility of object handle
'on'
(default) | 'callback'
| 'off'
Visibility of the object handle, specified as 'on'
, 'callback'
,
or 'off'
.
This property controls the visibility of the object in its parent's
list of children. When an object is not visible in its parent's list
of children, it is not returned by functions that obtain objects by
searching the object hierarchy or querying properties. These functions
include get
, findobj
, clf
,
and close
. Objects are valid
even if they are not visible. If you can access an object, you can
set and get its properties, and pass it to any function that operates
on objects.
HandleVisibility Value | Description |
---|---|
'on' | The object is always visible. |
'callback' | The object is visible from within callbacks or functions invoked by callbacks, but not from within functions invoked from the command line. This option blocks access to the object at the command-line, but allows callback functions to access it. |
'off' | The object is invisible at all times. This option is useful
for preventing unintended changes to the UI by another function. Set
the HandleVisibility to 'off' to
temporarily hide the object during the execution of that function.
|
Identifiers
Type
— Type of graphics object
'uieditfield'
This property is read-only.
Type of graphics object, returned as 'uieditfield'
.
Tag
— Object identifier
''
(default) | character vector | string scalar
Object identifier, specified as a character vector or string scalar. You can specify a unique Tag
value to serve as an identifier for an object. When you need access to the object elsewhere in your code, you can use the findobj
function to search for the object based on the Tag
value.
UserData
— User data
[]
(default) | array
User data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell array, character array, table, or structure. Use this property to store arbitrary data on an object.
If you are working in App Designer, create public or private properties in the app to share data instead of using the UserData
property. For more information, see Share Data Within App Designer Apps.
Object Functions
focus | Focus UI component |
Examples
Set and Access Edit Field Property Values
Create a numeric edit field and set its limits to be 0 to 100.
fig = uifigure; ef = uieditfield(fig,"numeric", ... "Limits",[0 100]);
Determine the default value.
val = ef.Value
val = 0
Set the edit field value to 50.
ef.Value = 50;
Specify Length and Type of Edit Field Text
Create a text edit field that allows the app user to enter text that is between 3 and 12 characters long and that consists only of letters and digits.
fig = uifigure; ef = uieditfield(fig, ... "CharacterLimits",[3 12], ... "InputType","alphanumerics");
If you type a value in the text edit field that is invalid, MATLAB displays a message that indicates the problem. If you then enter the invalid value by pressing Enter or navigating away from the component, MATLAB restores the value to the previous valid value.
Use Event Data to Maintain a Log
Create an app that maintains a log of the values that an app user enters into a text edit field and displays that log in a text area.
In a file named logEntriesApp.m
, write a function that implements the app:
Create a UI figure and a grid layout manager to lay out the app.
Create a text edit field and a text area in the grid layout manager.
Write a callback function named
editFieldValueChanged
that adds the previously entered text to the text area whenever a user enters new text in the edit field, and assign the function to theValueChangedFcn
callback property of the edit field. Access the previously entered text using the callback event data. For more information about callbacks, see Create Callbacks for Apps Created Programmatically.
function logEntriesApp fig = uifigure; g = uigridlayout(fig); g.RowHeight = {'fit','1x'}; g.ColumnWidth = {'1x',150,'1x'}; loglist = uitextarea(g, ... "Editable","off"); loglist.Layout.Row = 2; loglist.Layout.Column = 2; ef = uieditfield(g, ... "Value","Daniela Hendrix",... "ValueChangedFcn",@(src,event) editFieldValueChanged(src,event,loglist)); ef.Layout.Row = 1; ef.Layout.Column = 2; end % Create ValueChangedFcn callback function editFieldValueChanged(src,event,loglist) prev = event.PreviousValue; loglist.Value = [prev; loglist.Value]; end
Run the logEntriesApp
function. Enter some names in the edit field. Whenever you enter a new name, the app adds the previous name to the log displayed in the text area.
Version History
Introduced in R2016aR2022b: Specify valid length and input type for edit field text
Specify input constraints for edit field text.
Use the
CharacterLimits
property to specify a maximum and minimum number of allowed characters.Use the
InputType
property to restrict the allowed character types.
R2021a: Specify placeholder text
Provide a short hint that describes the expected edit field input by using the
Placeholder
property.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)