Extract Controller
This example shows how to obtain an LTI representation of an unconstrained MPC controller using ss
. You can use this to analyze the frequency response and performance of the controller.
Define a plant model. For this example, use the CSTR model described in Design Controller Using MPC Designer.
A = [-0.0285 -0.0014; -0.0371 -0.1476]; B = [-0.0850 0.0238; 0.0802 0.4462]; C = [0 1; 1 0]; D = zeros(2,2); CSTR = ss(A,B,C,D); CSTR.InputGroup.MV = 1; CSTR.InputGroup.UD = 2; CSTR.OutputGroup.MO = 1; CSTR.OutputGroup.UO = 2;
Create an MPC controller for the defined plant using the same sample time, prediction horizon, and tuning weights described in Design MPC Controller at the Command Line.
MPCobj = mpc(CSTR,1,15);
-->The "ControlHorizon" property is empty. Assuming default 2. -->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000. -->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000. -->The "Weights.OutputVariables" property is empty. Assuming default 1.00000. for output(s) y1 and zero weight for output(s) y2
MPCobj.W.ManipulatedVariablesRate = 0.3; MPCobj.W.OutputVariables = [1 0];
Extract the LTI state-space representation of the controller.
MPCss = ss(MPCobj);
-->Converting model to discrete time. -->The "Model.Disturbance" property is empty: Assuming unmeasured input disturbance #2 is integrated white noise. Assuming no disturbance added to measured output channel #1. -->The "Model.Noise" property is empty. Assuming white noise on each measured output.
Convert the original CSTR
model to discrete form using the same sample time as the MPC controller.
CSTRd = c2d(CSTR,MPCss.Ts);
Create an LTI model of the closed-loop system using feedback
. Use the manipulated variable and measured output for feedback, indicating a positive feedback loop. Using negative feedback would lead to an unstable closed-loop system, because the MPC controller is designed to use positive feedback.
CLsys = feedback(CSTRd,MPCss,1,1,1);
You can then analyze the resulting feedback system. For example, verify that all closed-loop poles are within the unit circle.
poles = eig(CLsys)
poles = 6×1 complex
0.5513 + 0.2700i
0.5513 - 0.2700i
0.6131 + 0.1110i
0.6131 - 0.1110i
0.9738 + 0.0000i
0.9359 + 0.0000i
You can also view the system frequency response.
bode(CLsys)