interpolateCurrentDensity
Interpolate current density in DC conduction result at arbitrary spatial locations
Since R2022b
Syntax
Description
Examples
Create an femodel
object for DC conduction analysis and include a 2-D geometry of a plate with a hole into the model.
model = femodel(AnalysisType="dcConduction", ... Geometry="PlateHolePlanar.stl");
Plot the geometry.
pdegplot(model.Geometry,EdgeLabels="on");
Specify the conductivity of the material.
model.MaterialProperties = ...
materialProperties(ElectricalConductivity=6e4);
Apply the voltage boundary conditions on the top and bottom edges of the plate.
model.EdgeBC(3) = edgeBC(Voltage=100); model.EdgeBC(2) = edgeBC(Voltage=200);
Specify the surface current density on the edge representing the hole.
model.EdgeLoad(5) = edgeLoad(SurfaceCurrentDensity=200000);
Generate a mesh.
model = generateMesh(model);
Solve the problem.
R = solve(model);
Plot the electric potential and current density.
figure pdeplot(R.Mesh,XYData=R.ElectricPotential,ColorMap="jet", ... FlowData=[R.CurrentDensity.Jx R.CurrentDensity.Jy]) axis equal
Interpolate the resulting current density to a grid covering the central portion of the geometry.
[X,Y] = meshgrid(2:0.25:8,8:0.25:12); Jintrp = interpolateCurrentDensity(R,X,Y)
Jintrp = FEStruct with properties: Jx: [425×1 double] Jy: [425×1 double]
Reshape Jintrp.Jx
and Jintrp.Jy
, and plot the resulting current density.
JintrpX = reshape(Jintrp.Jx,size(X)); JintrpY = reshape(Jintrp.Jy,size(Y)); quiver(X,Y,JintrpX,JintrpY,Color="red") axis equal
Alternatively, you can specify the grid by using a matrix of query points.
querypoints = [X(:),Y(:)]'; Jintrp = interpolateCurrentDensity(R,querypoints);
Create an femodel
object for DC conduction analysis and include a geometry representing a 10-by-10-by-1 solid plate into the model.
model = femodel(AnalysisType="dcConduction", ... Geometry="Plate10x10x1.stl");
Plot the geometry.
pdegplot(model.Geometry,FaceLabels="on",FaceAlpha=0.3)
Specify the conductivity of the material.
model.MaterialProperties = ...
materialProperties(ElectricalConductivity=6e4);
Apply the voltage boundary conditions on the two faces of the plate.
model.FaceBC([1 3]) = faceBC(Voltage=0);
Specify the surface current density on the top of the plate.
model.FaceLoad(5) = faceLoad(SurfaceCurrentDensity=100);
Generate a mesh.
model = generateMesh(model);
Solve the problem.
R = solve(model);
Plot the electric potential.
figure pdeplot3D(R.Mesh,ColorMapData=R.ElectricPotential)
Plot the current density.
figure pdeplot3D(R.Mesh,FlowData=[R.CurrentDensity.Jx, ... R.CurrentDensity.Jy, ... R.CurrentDensity.Jz])
Interpolate the resulting current density to a coarser grid.
[X,Y,Z] = meshgrid(0:10,0:10,0:0.5:1); Jintrp = interpolateCurrentDensity(R,X,Y,Z)
Jintrp = FEStruct with properties: Jx: [363×1 double] Jy: [363×1 double] Jz: [363×1 double]
Reshape Jintrp.Jx
, Jintrp.Jy
, and Jintrp.Jz
.
JintrpX = reshape(Jintrp.Jx,size(X)); JintrpY = reshape(Jintrp.Jy,size(Y)); JintrpZ = reshape(Jintrp.Jz,size(Z));
Plot the resulting current density.
figure
quiver3(X,Y,Z,JintrpX,JintrpY,JintrpZ,Color="red")
Input Arguments
Solution of a DC conduction problem, specified as a ConductionResults
object. Create results
using the solve
function.
x-coordinate query points, specified as a real array.
interpolateCurrentDensity
evaluates the current density at the 2-D
coordinate points [xq(i) yq(i)]
or at the 3-D coordinate points
[xq(i) yq(i) zq(i)]
for every i
. Because of
this, xq
, yq
, and (if present)
zq
must have the same number of entries.
interpolateCurrentDensity
converts the query points to column
vectors xq(:)
, yq(:)
, and (if present)
zq(:)
. It returns current density values as a column vector of the
same size. To ensure that the dimensions of the returned solution are consistent with
the dimensions of the original query points, use reshape
. For
example, use Jintrp = reshape(Jintrp,size(xq))
.
Example: xq = [0.5 0.5 0.75 0.75]
Data Types: double
y-coordinate query points, specified as a real array.
interpolateCurrentDensity
evaluates the current density at the 2-D
coordinate points [xq(i) yq(i)]
or at the 3-D coordinate points
[xq(i) yq(i) zq(i)]
for every i
. Because of
this, xq
, yq
, and (if present)
zq
must have the same number of entries.
interpolateCurrentDensity
converts the query points to column
vectors xq(:)
, yq(:)
, and (if present)
zq(:)
. It returns current density values as a column vector of the
same size. To ensure that the dimensions of the returned solution are consistent with
the dimensions of the original query points, use reshape
. For
example, use Jintrp = reshape(Jintrp,size(yq))
.
Example: yq = [1 2 0 0.5]
Data Types: double
z-coordinate query points, specified as a real array.
interpolateCurrentDensity
evaluates the current density at the 3-D
coordinate points [xq(i) yq(i) zq(i)]
. Therefore,
xq
, yq
, and zq
must have
the same number of entries.
interpolateCurrentDensity
converts the query points to column
vectors xq(:)
, yq(:)
, and
zq(:)
. It returns current density values as a column vector of the
same size. To ensure that the dimensions of the returned solution are consistent with
the dimensions of the original query points, use reshape
. For
example, use Jintrp = reshape(Jintrp,size(zq))
.
Example: zq = [1 1 0 1.5]
Data Types: double
Query points, specified as a real matrix with either two rows for 2-D geometry or
three rows for 3-D geometry. interpolateCurrentDensity
evaluates the
current density at the coordinate points querypoints(:,i)
for every
i
, so each column of querypoints
contains
exactly one 2-D or 3-D query point.
Example: For a 2-D geometry, querypoints = [0.5 0.5 0.75 0.75; 1 2 0
0.5]
Data Types: double
Output Arguments
Current density at query points, returned as an FEStruct
object
with the properties representing the spatial components of the current density at the
query points. For query points that are outside the geometry,
Jintrp.Jx(i)
, Jintrp.Jy(i)
, and
Jintrp.Jz(i)
are NaN
. Properties of an
FEStruct
object are read-only.
Version History
Introduced in R2022b
See Also
Objects
Functions
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
选择网站
选择网站以获取翻译的可用内容,以及查看当地活动和优惠。根据您的位置,我们建议您选择:。
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- América Latina (Español)
- Canada (English)
- United States (English)
欧洲
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)