主要内容

atmosphere

Add atmosphere model object to radar scenario

Since R2022b

Description

atmos = atmosphere(scenario,model) creates an atmosphere object atmos that belongs to a radar scenario object. The atmosphere is defined by the atmospheric refraction model. To enable this object method, set the IsEarthCentered property of the radarScenario object scenario to true.

After creating the atmosphere, you can use the effearthradius object function to compute the effective earth radius and the effective earth radius factor.

example

atmos = atmosphere(___,Name,Value) sets the atmosphere object with additional properties specified by one or more name-value arguments.

example

Examples

collapse all

Create an atmosphere using the effective earth radius model. Assume the effective earth radius is 4/3 of the actual earth radius. Using the model requires that the IsEarthCentered property of radarScenario be true.

scenario  = radarScenario('IsEarthCentered',true);
atmos = atmosphere(scenario,'EffectiveEarth')
atmos = 
  AtmosphereEffectiveEarth with properties:

             InputFormat: 'Radius'
    EffectiveEarthRadius: 8.4774e+06

Compare the effective Earth factors calculated from the CRPL and 4/3 Earth models. Assume the slant range is 100 km, the antenna heights range from 1 to 10 km, and the target altitude is at the surface.

 SR = 100e3;
 ha = linspace(1,10,50).*1e3;
 ht = 0;

Create a radar scenario and a CRPL atmosphere.

scenario = radarScenario('IsEarthCentered',true);
atmos = atmosphere(scenario,'CRPL');
[~,kCRPL] = effearthradius(atmos,SR,ha,ht);

Plot the computed k-factor and a vertical 4/3 line.

semilogy(kCRPL,ha*1e-3)
hold on
xline(4/3,'-.r')
xline(1,'--k')
xlim([0.99 1.37])
grid on
legend('CRPL','4/3 Earth','True Earth')
xlabel('Effective Earth Radius Factor k')
ylabel('Altitude (km)')
hold off

Figure contains an axes object. The axes object with xlabel Effective Earth Radius Factor k, ylabel Altitude (km) contains 3 objects of type line, constantline. These objects represent CRPL, 4/3 Earth, True Earth.

Input Arguments

collapse all

Radar scenario, specified as a radarScenario object.

Atmospheric model, specified as 'FreeSpace', 'EffectiveEarth', 'RefractivityGradient', or 'CRPL'.

Data Types: char | string

Name-Value Arguments

expand all

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the argument name and Value is the corresponding value. Name-value arguments must appear after other arguments, but the order of the pairs does not matter.

Example: InputFormat='k Factor'

No additional name-value pairs are required when the model argument is set to FreeSpace.

EffectiveEarth model

expand all

Input format, specified as 'Radius' or 'k Factor'. Setting the InputFormat property to 'Radius' enables the EffectiveEarthRadius property. Setting the InputFormat property to 'k Factor' enables the EffectiveEarthK property.

Dependencies

Data Types: char | string

Effective earth radius, specified as a positive scalar. The default earth radius of 4/3 Re is equivalent to a refractivity gradient of -39e-9. Re is the radius of the earth and is obtained from physconst('EarthRadius'). Units are in meters.

Example: 11/7 Re

Dependencies

To enable this property, set the model argument to 'EffectiveEarth' and set the InputFormat property to 'Radius'.

Data Types: double

Effective earth k-factor, specified as a nonnegative scalar. The effective Earth radius Re in this case is calculated as: Re = k*Rearth, where Rearth is the Earth radius as output by physconst('EarthRadius').

Example: 11/7

Dependencies

To enable this property, set the model argument to 'EffectiveEarth' and set the InputFormat property to 'k Factor'.

Data Types: double

RefractivityGradient model

expand all

Refractivity gradient, specified as a scalar. The refractivity gradient is used to calculate the effective Earth radius.

Dependencies

To enable this property, set the model argument to 'RefractivityGradient'.

Data Types: double

CRPL

expand all

Surface refractivity, specified as a non-negative scalar. Units are N-units.

Dependencies

To enable this property, set the model argument to 'CRPL'.

Data Types: double

Refraction exponent factor for the CRPL exponential reference atmosphere model, specified as a non-negative scalar. Units are 1/km.

Dependencies

To enable this property, set the model argument to 'CRPL'.

Data Types: double

Maximum number of iterations for the CRPL method, specified as a non-negative, scalar integer. This input acts as a safeguard to prevent endless iterative calculations.

Example: 20

Dependencies

To enable this property, set the model argument to 'CRPL'.

Data Types: double

Specifies the absolute tolerance for the CRPL method, specified as a positive scalar. This is the tolerance which the iterative process is terminated.

Example: 0.1

Dependencies

To enable this property, set the model argument to 'CRPL'.

Data Types: double

Output Arguments

collapse all

Atmosphere, returned as an Atmosphere object.

More About

collapse all

References

[1] Bradford R. Bean, G. D. Thayer. CRPL Exponential Reference Atmosphere, U.S. Department of Commerce, National Bureau of Standards, 1959.

[2] Blake, L. V. "A Note on Selection of an Atmospheric Refractivity Model for Radar Range-Height-Angle Charts." NRL Report 5626, Apr. 24, 1961

[3] Blake, L.V. "Ray Height Computation for a Continuous Nonlinear Atmospheric Refractive-Index Profile." RADIO SCIENCE, Vol. 3 (New Series), No. 1, Jan. 1968, pp. 85-92.

[4] Doerry, A. W. "Correcting Radar Range Measurements for Atmospheric Propagation Effects." edited by Kenneth I. Ranney and Armin Doerry, 90771K. Baltimore, Maryland, USA, 2014. https://doi.org/10.1117/12.2048977.

[5] Doerry, A. W. "Earth Curvature and Atmospheric Refraction Effects on Radar Signal Propagation." Sandia National Laboratories, SAND2012-10690, Jan. 2013.

[6] Robertshaw, G. "Effective Earth Radius for Refraction of Radio Waves at Altitudes above 1 Km." IEEE Transactions on Antennas and Propagation 34, no. 9 (September 1986): 1099-1105. https://doi.org/10.1109/TAP.1986.1143948.

[7] Sweezy, W. B. , and B. R. Bean. "Correction of Atmospheric Refraction Errors In Radio Height Finding." Journal of Research of the National Bureau of Standards, D. Radio Propagation, 67D, no. 2 (March - April 1963).

Version History

Introduced in R2022b