Passivity: Test, Visualize, and Enforce Passivity of Rational Fit Output
This example shows how to test, visualize, and enforce the passivity of output from the rationalfit
function.
S-Parameter Data Passivity
Time-domain analysis and simulation depends critically on being able to convert frequency-domain S-parameter data into causal, stable, and passive time-domain representations. Because the rationalfit
function guarantees that all poles are in the left half plane, rationalfit
output is both stable and causal by construction. The problem is passivity.
N-port S-parameter data represents a frequency-dependent transfer function H(f). You can create an S-parameters object in RF Toolbox™ by reading a Touchstone® file, such as passive.s2p
, into the sparameters
function.
You can use the ispassive
function to check the passivity of the S-parameter data, and the passivity
function to plot the 2-norm of the N x N matrices H(f) at each data frequency.
S = sparameters('passive.s2p');
ispassive(S)
ans = logical
1
passivity(S)
Testing and Visualizing rationalfit
Output Passivity
The rationalfit
function converts N-port sparameter data, S
into an NxN matrix of rfmodel.rational
objects. Using the ispassive
function on the N x N fit output reports that even if input data S
is passive, the output fit is not passive. In other words, the norm H(f) is greater than one at some frequency in the range [0,Inf].
The passivity
function takes an N x N fit as input and plots its passivity. This is a plot of the upper bound of the norm(H(f)) on [0,Inf], also known as the H-infinity norm.
fit = rationalfit(S); ispassive(fit)
ans = logical
0
passivity(fit)
The makepassive
function takes as input an N x N array of fit objects and also the original S-parameter data, and produces a passive fit by using convex optimization techniques to optimally match the data of the S-parameter input S
while satisfying passivity constraints. The residues C and feedthrough matrix D of the output pfit
are modified, but the poles A of the output pfit are identical to the poles A of the input fit.
pfit = makepassive(fit,S,'Display','on');
ITER H-INFTY NORM FREQUENCY ERRDB CONSTRAINTS 0 1 + 1.791e-02 17.6816 GHz -40.4702 1 1 + 2.678e-04 282.601 MHz -40.9167 5 2 1 + 7.110e-05 377.139 MHz -40.9077 8 3 1 + 1.361e-06 361.144 MHz -40.9066 9 4 1 - 1.800e-06 367.533 MHz -40.9064 10
ispassive(pfit)
ans = logical
1
passivity(pfit)
all(vertcat(pfit(:).A) == vertcat(fit(:).A))
ans = logical
1
Start makepassive
with Prescribed Poles and Zero C and D
To demonstrate that only C and D are modified by makepassive
, one can zero out C and D and re-run makepassive
. The output, pfit
still has the same poles as the input fit. The differences between pfit
and pfit2
arise because of the different starting points of the convex optimizations.
One can use this feature of the makepassive
function to produce a passive fit from a prescribed set of poles without any idea of starting C and D.
for k = 1:numel(fit) fit(k).C(:) = 0; fit(k).D(:) = 0; end pfit2 = makepassive(fit,S); passivity(pfit2)
all(vertcat(pfit2(:).A) == vertcat(fit(:).A))
ans = logical
1
Generate Equivalent SPICE Circuit from Passive Fit
The generateSPICE
function takes a passive fit and generates an equivalent circuit as a SPICE subckt file. The input fit is an N x N array of rfmodel.rational
objects as returned by rationalfit with an S-parameters object as input. The generated file is a SPICE model constructed solely of passive R, L, C elements and controlled source elements E, F, G, and H.
generateSPICE(pfit2,'mypassive.ckt') type mypassive.ckt
* Equivalent circuit model for mypassive.ckt .SUBCKT mypassive po1 po2 Vsp1 po1 p1 0 Vsr1 p1 pr1 0 Rp1 pr1 0 50 Ru1 u1 0 50 Fr1 u1 0 Vsr1 -1 Fu1 u1 0 Vsp1 -1 Ry1 y1 0 1 Gy1 p1 0 y1 0 -0.02 Vsp2 po2 p2 0 Vsr2 p2 pr2 0 Rp2 pr2 0 50 Ru2 u2 0 50 Fr2 u2 0 Vsr2 -1 Fu2 u2 0 Vsp2 -1 Ry2 y2 0 1 Gy2 p2 0 y2 0 -0.02 Rx1 x1 0 1 Fxc1_2 x1 0 Vx2 18.8608455628952 Cx1 x1 xm1 3.95175907242771e-09 Vx1 xm1 0 0 Gx1_1 x1 0 u1 0 -0.0921740428792648 Rx2 x2 0 1 Fxc2_1 x2 0 Vx1 -0.0832663456402132 Cx2 x2 xm2 3.95175907242771e-09 Vx2 xm2 0 0 Gx2_1 x2 0 u1 0 0.0076749957134407 Rx3 x3 0 1 Cx3 x3 0 2.73023891256077e-12 Gx3_1 x3 0 u1 0 -2.06195853592513 Rx4 x4 0 1 Cx4 x4 0 7.77758885464816e-12 Gx4_1 x4 0 u1 0 -2.91812992340686 Rx5 x5 0 1 Cx5 x5 0 2.29141629880011e-11 Gx5_1 x5 0 u1 0 -0.544258745379989 Rx6 x6 0 1 Cx6 x6 0 9.31845201582549e-11 Gx6_1 x6 0 u1 0 -0.654472771464866 Rx7 x7 0 1 Cx7 x7 0 4.89917765129955e-10 Gx7_1 x7 0 u1 0 -0.0811085791732396 Rx8 x8 0 1 Cx8 x8 0 1.25490425576858e-08 Gx8_1 x8 0 u1 0 -0.947597037040284 Rx9 x9 0 1 Fxc9_10 x9 0 Vx10 18.48476782415 Cx9 x9 xm9 3.95175907242771e-09 Vx9 xm9 0 0 Gx9_2 x9 0 u2 0 -0.0931554263774873 Rx10 x10 0 1 Fxc10_9 x10 0 Vx9 -0.0849604225839892 Cx10 x10 xm10 3.95175907242771e-09 Vx10 xm10 0 0 Gx10_2 x10 0 u2 0 0.00791452439102302 Rx11 x11 0 1 Cx11 x11 0 2.73023891256077e-12 Gx11_2 x11 0 u2 0 -2.08568376883053 Rx12 x12 0 1 Cx12 x12 0 7.77758885464816e-12 Gx12_2 x12 0 u2 0 -2.92831493290198 Rx13 x13 0 1 Cx13 x13 0 2.29141629880011e-11 Gx13_2 x13 0 u2 0 -0.607069609134215 Rx14 x14 0 1 Cx14 x14 0 9.31845201582549e-11 Gx14_2 x14 0 u2 0 -0.692675819285498 Rx15 x15 0 1 Cx15 x15 0 4.89917765129955e-10 Gx15_2 x15 0 u2 0 -0.0860600965539356 Rx16 x16 0 1 Cx16 x16 0 1.25490425576858e-08 Gx16_2 x16 0 u2 0 -0.948049815031899 Gyc1_1 y1 0 x1 0 -1 Gyc1_2 y1 0 x2 0 -1 Gyc1_3 y1 0 x3 0 -0.140226456003089 Gyc1_4 y1 0 x4 0 -0.0224053606295668 Gyc1_5 y1 0 x5 0 -1 Gyc1_6 y1 0 x6 0 -1 Gyc1_7 y1 0 x7 0 1 Gyc1_8 y1 0 x8 0 0.999899162849115 Gyc1_9 y1 0 x9 0 0.989768795439673 Gyc1_10 y1 0 x10 0 0.966813493274019 Gyc1_11 y1 0 x11 0 1 Gyc1_12 y1 0 x12 0 -1 Gyc1_13 y1 0 x13 0 0.810781448596926 Gyc1_14 y1 0 x14 0 0.941819403036702 Gyc1_15 y1 0 x15 0 -0.935805884074415 Gyc1_16 y1 0 x16 0 -0.999929417626443 Gyd1_1 y1 0 u1 0 0.604678443865245 Gyd1_2 y1 0 u2 0 -0.353220162701538 Gyc2_1 y2 0 x1 0 0.998563230419628 Gyc2_2 y2 0 x2 0 0.97510998663352 Gyc2_3 y2 0 x3 0 1 Gyc2_4 y2 0 x4 0 -1 Gyc2_5 y2 0 x5 0 0.900724171541662 Gyc2_6 y2 0 x6 0 0.997048499248955 Gyc2_7 y2 0 x7 0 -0.992517070282035 Gyc2_8 y2 0 x8 0 -1 Gyc2_9 y2 0 x9 0 -1 Gyc2_10 y2 0 x10 0 -1 Gyc2_11 y2 0 x11 0 -0.262633564705792 Gyc2_12 y2 0 x12 0 0.0673766779726025 Gyc2_13 y2 0 x13 0 -1 Gyc2_14 y2 0 x14 0 -1 Gyc2_15 y2 0 x15 0 1 Gyc2_16 y2 0 x16 0 1 Gyd2_1 y2 0 u1 0 -0.337987098493609 Gyd2_2 y2 0 u2 0 0.697067411175786 .ENDS