sbionlinfit
Perform nonlinear least-squares regression using SimBiology models (requires Statistics and Machine Learning Toolbox software)
sbionlinfit
will be removed in a future release. Use sbiofit
instead.
Syntax
results
= sbionlinfit(modelObj
, pkModelMapObject
, pkDataObj
, InitEstimates
)
results
= sbionlinfit(modelObj
, pkModelMapObject
, pkDataObj
, InitEstimates
, Name,Value
)
results
= sbionlinfit(modelObj
, pkModelMapObject
, pkDataObj
, InitEstimates
, optionStruct
)
[results
, SimDataI
]
= sbionlinfit(...)
Description
performs least-squares regression using the SimBiology® model, results
= sbionlinfit(modelObj
, pkModelMapObject
, pkDataObj
, InitEstimates
)modelObj
, and returns estimated results
in the results
structure.
performs least-squares regression, with additional options specified by one or more
results
= sbionlinfit(modelObj
, pkModelMapObject
, pkDataObj
, InitEstimates
, Name,Value
)Name,Value
pair arguments.
Following is an alternative to the previous syntax:
specifies results
= sbionlinfit(modelObj
, pkModelMapObject
, pkDataObj
, InitEstimates
, optionStruct
)optionStruct
, a structure containing fields and
values used by the options
input structure to the nlinfit
(Statistics and Machine Learning Toolbox) function.
[
returns simulations of the SimBiology model, results
, SimDataI
]
= sbionlinfit(...)
, using the
estimated values of the parameters.modelObj
Input Arguments
|
SimBiology model object used to fit observed data. |
|
Note If using a |
|
Note For each subset of data belonging to a single group (as defined in the
data column specified by the
|
|
Vector of initial parameter estimates for each parameter estimated in
|
|
Structure containing fields and values used by the
If you have Parallel Computing Toolbox™, you can enable parallel computing for faster data fitting by
setting the name-value pair argument parpool; % Open a parpool for parallel computing opt = statset(...,'UseParallel',true); % Enable parallel computing results = sbionlinfit(...,opt); % Perform data fitting |
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
The Name,Value
arguments are the same as the fields and
values in the options
structure accepted by
nlinfit
. For a complete list, see the
options
input argument in the nlinfit
(Statistics and Machine Learning Toolbox) reference page in the Statistics and Machine Learning Toolbox™ documentation. The defaults for Name,Value
arguments are the same as for the options
structure accepted by
nlinfit
, except for:
DerivStep
— Default is the lesser of1e-4
, or the value of theSolverOptions.RelativeTolerance
property of the configuration set associated withmodelObj
, with a minimum ofeps^(1/3)
.FunValCheck
— Default isoff
.
Following are additional Name,Value
arguments that you can
use with sbionlinfit
.
|
Vector of integers specifying a transformation function for each
estimated parameter. The transformation function, beta = f(estimate) Each element in the vector must be one of these integers specifying
the transformation for the corresponding value of
|
|
Character vector specifying the form of the error term. Default is
If you specify an error model, the
Note If you specify an error model, you cannot specify weights. |
|
Either of the following:
Default is no weights. If you specify weights, you cannot specify an error model. |
|
Logical specifying whether Default: |
Output Arguments
|
1-by-N array of objects, where N is
the number of groups in
|
|
|
Version History
Introduced in R2009a
See Also
PKData object
| PKModelDesign object
| PKModelDesign object
| PKModelMap object
| Model object
| sbionlmefit
| nlinfit
(Statistics and Machine Learning Toolbox) | sbionlmefitsa