sbionlinfit
Perform nonlinear least-squares regression using SimBiology models (requires Statistics and Machine Learning Toolbox software)
sbionlinfit will be removed in a future release. Use sbiofit instead.
Syntax
results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj, InitEstimates)
results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj, InitEstimates, Name,Value)
results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj, InitEstimates, optionStruct)
[results, SimDataI]
= sbionlinfit(...)
Description
results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj, InitEstimates)modelObj, and returns estimated results
            in the results structure.
results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj, InitEstimates, Name,Value)Name,Value pair arguments.
Following is an alternative to the previous syntax:
results = sbionlinfit(modelObj, pkModelMapObject, pkDataObj, InitEstimates, optionStruct)optionStruct, a structure containing fields and
            values used by the options input structure to the nlinfit (Statistics and Machine Learning Toolbox) function.
[
            returns simulations of the SimBiology model, results, SimDataI]
= sbionlinfit(...)modelObj
Input Arguments
| 
 | SimBiology model object used to fit observed data. | 
| 
 | 
 Note If using a  | 
| 
 | 
 Note For each subset of data belonging to a single group (as defined in the
                            data column specified by the  
 | 
| 
 | Vector of initial parameter estimates for each parameter estimated in
                             | 
| 
 | Structure containing fields and values used by the
                             
 If you have Parallel Computing Toolbox™, you can enable parallel computing for faster data fitting by
                        setting the name-value pair argument  parpool; % Open a parpool for parallel computing opt = statset(...,'UseParallel',true); % Enable parallel computing results = sbionlinfit(...,opt); % Perform data fitting | 
Name-Value Arguments
Output Arguments
| 
 | 1-by-N array of objects, where N is
                        the number of groups in  
 
 | 
| 
 | 
 | 
Version History
Introduced in R2009a
See Also
PKData object | PKModelDesign object | PKModelMap object | Model object | sbionlmefit | nlinfit (Statistics and Machine Learning Toolbox) | sbionlmefitsa