Flexible Angle Beam
Libraries:
Simscape /
Multibody /
Body Elements /
Flexible Bodies /
Beams
Description
The Flexible Angle Beam block models a slender beam with an L-shaped cross-section, also known as an L-beam. The L-beam consists of one horizontal component and one vertical component, which are called beam legs. The L-beam can have small and linear deformations. These deformations include extension, bending, and torsion. The block calculates the beam cross-sectional properties, such as the axial, flexural, and torsional rigidities, based on the geometry and material properties that you specify.
The geometry of the L-beam is an extrusion of its cross-section. The beam cross-section, defined in the xy-plane, is extruded along the z-axis. To define the cross-section, you can specify its dimensions in the Geometry section of the block dialog box. The figure shows an L-beam and its cross-section. The reference frame of the beam is located at the midpoint of the intersection line of the mid-planes of the two legs.
This block supports two damping methods and a discretization option to increase the accuracy of the modeling. For more information, see Overview of Flexible Beams.
Stiffness and Inertia Properties
The block provides two ways to specify the stiffness and inertia properties for a beam. To model a beam made of homogeneous, isotropic, and linearly elastic material, in the Stiffness and Inertia section, set the Type parameter to Calculate from Geometry
. Then specify the density, Young’s modulus, and Poisson’s ratio or shear modulus. See the Derived Values parameter for more information about the calculated stiffness and inertia properties.
Alternatively, you can manually specify the stiffness and inertia properties, such as flexural
rigidity and mass moment of inertia density, by setting the Type
parameter to Custom
. Use this option to model a beam that is made
of anisotropic materials. This option decouples the mechanical properties from the beam
cross section so you can specify desired mechanical properties without capturing the details
of the exact cross section, such as fillet, rounds, chamfers, and tapers.
The manually entered stiffness properties must be calculated with respect to the frame located at the bending centroid. The frame must be in the same orientation as the beam reference frame. The stiffness matrix is
where:
is the axial stiffness along the beam.
is the centroidal bending stiffness about the x-axis.
is the centroidal bending stiffness about the y-axis.
is the torsional stiffness.
is the centroidal cross bending stiffness.
The manually entered inertia properties must be calculated with respect to a frame located at the center of mass. The frame must be in the same orientation as the beam reference frame. The mass matrix includes rotatory inertia
where:
is the mass per unit length.
is the mass moment of inertia density about the x-axis.
is the mass moment of inertia density about the y-axis.
is the polar mass moment of inertia density.
is the mass product of inertia density.
The beam block uses the classical beam theory where the relation between sectional strains and stress resultants is
where:
is the axial force along the beam.
is the bending moment about the x-axis.
is the bending moment about the y-axis.
is the torsional moment about the z-axis.
is the axial strain along the beam.
is the bending curvature about the x-axis.
is the bending curvature about the y-axis.
is the torsional twist about the z-axis.
Ports
Frame
Parameters
References
[1] Shabana, Ahmed A. Dynamics of Multibody Systems. Fourth edition. New York: Cambridge University Press, 2014.
[2] Agrawal, Om P., and Ahmed A. Shabana. “Dynamic Analysis of Multibody Systems Using Component Modes.” Computers & Structures 21, no. 6 (January 1985): 1303–12. https://doi.org/10.1016/0045-7949(85)90184-1.
Extended Capabilities
Version History
Introduced in R2020a