Passive
使用 AC 电力电缆、变压器、RLC 分支和负载以及传输线传输和转换电力。
类别
- 基本
电容器、电阻器和电感器等基础无源组件
- Lines
电缆、耦合线路、传输线
- RLC Assemblies
电阻、电感和电容电路、星型和三角型连接负载
- Thermal
基础热组件
- Transformers
电感器、分接开关变压器、双绕组和三绕组变压器
精选示例
Quantifying IGBT Thermal Losses
The generation of a temperature profile based on switching and conduction losses in an insulated-gate bipolar transistor (IGBT). There are two buck converters. For one converter, the IGBT attaches to a Foster thermal model. For the other converter, the IGBT attaches to a Cauer thermal model. The parameters for the thermal models are tuned to give roughly equivalent results. At a simulation time of 50ms, the driving frequency changes from 40kHz to 20kHz, which increases the conduction losses and decreases the switching losses. The change in the losses results in a corresponding change in the temperature of the IGBT.
Twelve-Pulse Thyristor Rectifier
Control a twelve-pulse thyristor rectifier. Two thyristor converters are connected to a Wye-Delta-Wye transformer on the input. A Thyristor 12-Pulse Generator block generates the gate signals for the two converters.
Three-Phase Asynchronous Drive with Sensor Control
Control and analyze the operation of an Asynchronous Machine (ASM) using sensored rotor field-oriented control. The model shows the main electrical circuit, with three additional subsystems containing the controls, measurements, and scopes. The Controls subsystem contains two controllers: one for the Grid-Side Converter (AC/DC) and one for the Machine-Side Converter (DC/AC). The Scopes subsystem contains two time scopes: one for the Grid-Side Converter and one for the ASM. When the model is executed, a Spectrum Analyzer opens and displays frequency data for the A-Phase Supply Current.
Nonlinear Transformer Characteristics
Calculation and confirmation of a nonlinear transformer core magnetization characteristic. Starting with fundamental parameter values, the core characteristic is derived. This is then used in a Simscape™ model of an example test circuit which can be used to plot the core magnetization characteristic on an oscilloscope. Model outputs are then compared to the known values.
AC Cable with Bonded Sheaths
A three-phase cable model comprised of multiple pi-sections. Each phase is enclosed in a conductive sheath. The conductive sheath is connected to ground at either end of the cable through a simple resistance. A high-voltage source provides power to an unbalanced resistive load through the power cable. You can configure the sheath to be either series-bonded or cross-bonded. You can also configure the number of pi-sections. Increasing the number of pi-sections improves the accuracy but slows down the simulation. To facilitate convergence, the voltage source includes an internal impedance.
Supercapacitor Charging and Discharging Behavior
The voltage output by a Supercapacitor block as it is charged and then discharged. To charge the Supercapacitor, a current of 100 mA is input to the Supercapacitor for 100 seconds. The Supercapacitor is then rested for one minute. For the next hour, to discharge the Supercapacitor, a load of 50 mA is stepped on for one second in every 50 seconds. The Supercapacitor is then rested until the end of the simulation. The scope displays the Supercapacitor charging/discharging current and voltage.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
选择网站
选择网站以获取翻译的可用内容,以及查看当地活动和优惠。根据您的位置,我们建议您选择:。
您也可以从以下列表中选择网站:
如何获得最佳网站性能
选择中国网站(中文或英文)以获得最佳网站性能。其他 MathWorks 国家/地区网站并未针对您所在位置的访问进行优化。
美洲
- América Latina (Español)
- Canada (English)
- United States (English)
欧洲
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)