gevfit
Generalized extreme value parameter estimates
Syntax
parmhat = gevfit(X)
[parmhat,parmci] = gevfit(X)
[parmhat,parmci] = gevfit(X,alpha)
[...] = gevfit(X,alpha,options)
Description
parmhat = gevfit(X)
returns
maximum likelihood estimates of the parameters for the generalized
extreme value (GEV) distribution given the data in X. parmhat(1)
is
the shape parameter, k
, parmhat(2)
is
the scale parameter, sigma
, and parmhat(3)
is
the location parameter, mu
.
[parmhat,parmci] = gevfit(X)
returns
95% confidence intervals for the parameter estimates.
[parmhat,parmci] = gevfit(X,alpha)
returns 100(1-alpha)
%
confidence intervals for the parameter estimates.
[...] = gevfit(X,alpha,options)
specifies
control parameters for the iterative algorithm used to compute ML
estimates. This argument can be created by a call to statset
.
See statset('gevfit')
for parameter names and
default values. Pass in []
for alpha
to
use the default values.
When k < 0
, the GEV is the type III extreme
value distribution. When k > 0
, the GEV distribution
is the type II, or Frechet, extreme value distribution. If w
has
a Weibull distribution as computed by the wblfit
function,
then -w
has a type III extreme value distribution
and 1/w
has a type II extreme value distribution.
In the limit as k
approaches 0, the GEV is the
mirror image of the type I extreme value distribution as computed
by the evfit
function.
The mean of the GEV distribution is not finite when k
≥ 1
,
and the variance is not finite when k
≥ 1/2
.
The GEV distribution is defined for k*(X-mu)/sigma >
-1
.
References
[1] Embrechts, P., C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and Finance. New York: Springer, 1997.
[2] Kotz, S., and S. Nadarajah. Extreme Value Distributions: Theory and Applications. London: Imperial College Press, 2000.
Extended Capabilities
Version History
Introduced before R2006a