adjoint
Classical adjoint (adjugate) of square matrix
Syntax
Description
returns
the Classical Adjoint (Adjugate) Matrix
X
= adjoint(A
)X
of A
, such that A*X = det(A)*eye(n) =
X*A
, where n
is the number of rows in
A
.
Examples
Classical Adjoint (Adjugate) of Matrix
Find the classical adjoint of a numeric matrix.
A = magic(3); X = adjoint(A)
X = 3×3
-53.0000 52.0000 -23.0000
22.0000 -8.0000 -38.0000
7.0000 -68.0000 37.0000
Find the classical adjoint of a symbolic matrix.
syms x y z A = sym([x y z; 2 1 0; 1 0 2]); X = adjoint(A)
X =
Verify that det(A)*eye(3) = X*A
by using isAlways
.
cond = det(A)*eye(3) == X*A; isAlways(cond)
ans = 3x3 logical array
1 1 1
1 1 1
1 1 1
Compute Inverse Using Classical Adjoint and Determinant
Compute the inverse of this matrix by computing its classical adjoint and determinant.
syms a b c d A = [a b; c d]; invA = adjoint(A)/det(A)
invA =
Verify that invA
is the inverse of A
.
isAlways(invA == inv(A))
ans = 2x2 logical array
1 1
1 1
Input Arguments
A
— Square matrix
numeric matrix | matrix of symbolic scalar variables | symbolic function | symbolic matrix variable | symbolic matrix function | symbolic expression
Square matrix, specified as a numeric matrix, matrix of symbolic scalar variables, symbolic matrix variable, symbolic function, symbolic matrix function, or symbolic expression.
Data Types: single
| double
| sym
| symfun
| symmatrix
| symfunmatrix
More About
Classical Adjoint (Adjugate) Matrix
The classical adjoint, or adjugate, of a square matrix A is the square matrix X, such that the (i,j)-th entry of X is the (j,i)-th cofactor of A.
The (j,i)-th cofactor of A is defined as follows.
Aij is the submatrix of A obtained from A by removing the i-th row and j-th column.
The classical adjoint matrix should not be confused with the adjoint matrix. The adjoint is the conjugate transpose of a matrix while the classical adjoint is another name for the adjugate matrix or cofactor transpose of a matrix.
Version History
Introduced in R2013aR2022a: Compute classical adjoint of symbolic matrix functions
The adjoint
function accepts an input argument of type
symfunmatrix
.
R2021a: Compute classical adjoint of symbolic matrix variables
The adjoint
function accepts an input argument of type
symmatrix
.
R2018b: Compute classical adjoint of numeric matrices
The adjoint
function accepts a numeric matrix as an input
argument.
The adjoint
function supports numeric matrices of type
double
and single
, as well as symbolic matrices of
type sym
and symfun
.
See Also
ctranspose
| det
| inv
| rank
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)