erfi
Imaginary error function
Syntax
Description
erfi(
returns the imaginary error function
of x
)x
. If x
is a vector or a matrix,
erfi(x)
returns the imaginary error function of each element
of x
.
Examples
Imaginary Error Function for Floating-Point and Symbolic Numbers
Depending on its arguments, erfi
can
return floating-point or exact symbolic results.
Compute the imaginary error function for these numbers. Because these numbers are not symbolic objects, you get floating-point results.
s = [erfi(1/2), erfi(1.41), erfi(sqrt(2))]
s = 0.6150 3.7382 3.7731
Compute the imaginary error function for the same numbers converted to symbolic
objects. For most symbolic (exact) numbers, erfi
returns
unresolved symbolic calls.
s = [erfi(sym(1/2)), erfi(sym(1.41)), erfi(sqrt(sym(2)))]
s = [ erfi(1/2), erfi(141/100), erfi(2^(1/2))]
Use vpa
to approximate this result with
the 10-digit accuracy:
vpa(s, 10)
ans = [ 0.6149520947, 3.738199581, 3.773122512]
Imaginary Error Function for Variables and Expressions
Compute the imaginary error function for x
and sin(x) + x*exp(x)
. For most symbolic variables and
expressions, erfi
returns unresolved symbolic calls.
syms x f = sin(x) + x*exp(x); erfi(x) erfi(f)
ans = erfi(x) ans = erfi(sin(x) + x*exp(x))
Imaginary Error Function for Vectors and Matrices
If the input argument is a vector or a matrix,
erfi
returns the imaginary error function for each
element of that vector or matrix.
Compute the imaginary error function for elements of matrix M
and vector V
:
M = sym([0 inf; 1/3 -inf]); V = sym([1; -i*inf]); erfi(M) erfi(V)
ans = [ 0, Inf] [ erfi(1/3), -Inf] ans = erfi(1) -1i
Special Values of Imaginary Error Function
Compute the imaginary error function for x = 0, x = ∞, and x = –∞. Use sym
to convert 0
and infinities to symbolic objects. The imaginary error function has special
values for these parameters:
[erfi(sym(0)), erfi(sym(inf)), erfi(sym(-inf))]
ans = [ 0, Inf, -Inf]
Compute the imaginary error function for complex infinities. Use
sym
to convert complex infinities to symbolic objects:
[erfi(sym(i*inf)), erfi(sym(-i*inf))]
ans = [ 1i, -1i]
Handling Expressions That Contain Imaginary Error Function
Many functions, such as diff
and
int
, can handle expressions containing
erfi
.
Compute the first and second derivatives of the imaginary error function:
syms x diff(erfi(x), x) diff(erfi(x), x, 2)
ans = (2*exp(x^2))/pi^(1/2) ans = (4*x*exp(x^2))/pi^(1/2)
Compute the integrals of these expressions:
int(erfi(x), x) int(erfi(log(x)), x)
ans = x*erfi(x) - exp(x^2)/pi^(1/2) ans = x*erfi(log(x)) - int((2*exp(log(x)^2))/pi^(1/2), x)
Plot Imaginary Error Function
Plot the imaginary error function on the interval from -2 to 2.
syms x fplot(erfi(x),[-2,2]) grid on
Input Arguments
More About
Tips
erfi
returns special values for these parameters:erfi(0) = 0
erfi(inf) = inf
erfi(-inf) = -inf
erfi(i*inf) = i
erfi(-i*inf) = -i
Version History
Introduced in R2013a