kummerU
Confluent hypergeometric Kummer U function
Syntax
Description
Examples
Equation Returning the Kummer U Function as Its Solution
dsolve
can return solutions of second-order
ordinary differential equations in terms of the Kummer U function.
Solve this equation. The solver returns the results in terms of the Kummer U function and another hypergeometric function.
syms t z y(z) dsolve(z^3*diff(y,2) + (z^2 + t)*diff(y) + z*y)
ans = (C4*hypergeom(1i/2, 1 + 1i, t/(2*z^2)))/z^1i +... (C3*kummerU(1i/2, 1 + 1i, t/(2*z^2)))/z^1i
Kummer U Function for Numeric and Symbolic Arguments
Depending on its arguments, kummerU
can return
floating-point or exact symbolic results.
Compute the Kummer U function for these numbers. Because these numbers are not symbolic objects, you get floating-point results.
A = [kummerU(-1/3, 2.5, 2) kummerU(1/3, 2, pi) kummerU(1/2, 1/3, 3*i)]
A = 0.8234 + 0.0000i 0.7284 + 0.0000i 0.4434 - 0.3204i
Compute the Kummer U function for the numbers converted to symbolic objects. For most
symbolic (exact) numbers, kummerU
returns unresolved symbolic
calls.
symA = [kummerU(-1/3, 2.5, sym(2)) kummerU(1/3, 2, sym(pi)) kummerU(1/2, sym(1/3), 3*i)]
symA = kummerU(-1/3, 5/2, 2) kummerU(1/3, 2, pi) kummerU(1/2, 1/3, 3i)
Use vpa
to approximate symbolic results with the required number of
digits.
vpa(symA,10)
ans = 0.8233667846 0.7284037305 0.4434362538 - 0.3204327531i
Some Special Values of Kummer U
The Kummer U function has special values for some parameters.
If a
is a negative integer, the Kummer U function reduces to a
polynomial.
syms a b z [kummerU(-1, b, z) kummerU(-2, b, z) kummerU(-3, b, z)]
ans = z - b b - 2*z*(b + 1) + b^2 + z^2 6*z*(b^2/2 + (3*b)/2 + 1) - 2*b - 6*z^2*(b/2 + 1) - 3*b^2 - b^3 + z^3
If b = 2*a
, the Kummer U function reduces to an expression involving
the modified Bessel function of the second kind.
kummerU(a, 2*a, z)
ans = (z^(1/2 - a)*exp(z/2)*besselk(a - 1/2, z/2))/pi^(1/2)
If a = 1
or a = b
, the Kummer U function reduces
to an expression involving the incomplete gamma function.
kummerU(1, b, z)
ans = z^(1 - b)*exp(z)*igamma(b - 1, z)
kummerU(a, a, z)
ans = exp(z)*igamma(1 - a, z)
If a = 0
, the Kummer U function is 1
.
kummerU(0, a, z)
ans = 1
Handle Expressions Containing the Kummer U Function
Many functions, such as diff
,
int
, and limit
, can handle expressions
containing kummerU
.
Find the first derivative of the Kummer U function with respect to
z
.
syms a b z diff(kummerU(a, b, z), z)
ans = (a*kummerU(a + 1, b, z)*(a - b + 1))/z - (a*kummerU(a, b, z))/z
Find the indefinite integral of the Kummer U function with respect to
z
.
int(kummerU(a, b, z), z)
ans = ((b - 2)/(a - 1) - 1)*kummerU(a, b, z) +... (kummerU(a + 1, b, z)*(a - a*b + a^2))/(a - 1) -... (z*kummerU(a, b, z))/(a - 1)
Find the limit of this Kummer U function.
limit(kummerU(1/2, -1, z), z, 0)
ans = 4/(3*pi^(1/2))
Input Arguments
More About
Tips
kummerU
returns floating-point results for numeric arguments that are not symbolic objects.kummerU
acts element-wise on nonscalar inputs.All nonscalar arguments must have the same size. If one or two input arguments are nonscalar, then
kummerU
expands the scalars into vectors or matrices of the same size as the nonscalar arguments, with all elements equal to the corresponding scalar.
References
[1] Slater, L. J. “Confluent Hypergeometric Functions.” Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. (M. Abramowitz and I. A. Stegun, eds.). New York: Dover, 1972.
Version History
Introduced in R2014b