Main Content

Lateral Driver

Lateral path-tracking controller

  • Lateral Driver block

Libraries:
Vehicle Dynamics Blockset / Vehicle Scenarios / Driver

Description

The Lateral Driver block implements a control model to generate normalized steering commands that track a lateral reference displacement. The normalized steering commands can vary between -1 to 1. To model the dynamics, the block uses a linear single track (bicycle) model. Use the Lateral Driver block to:

  • Close the loop between a predefined path and actual vehicle motion.

  • Generate steering commands that track predefined paths. You can connect the Lateral Driver block output to steering block inputs.

Configurations

External Actions

Use the External Actions parameters to create input ports for signals that can disable, hold, or override the closed-loop steering command. The block uses this priority order for the input commands: disable (highest), hold, override. The block uses this priority order for the input commands: disable (highest), hold, override.

This table summarizes the external action parameters.

Goal

External Action Parameter

Input Ports

Data Type

Override the steering command with an input steering command.

Steering override

EnblSteerOvr

Boolean

SteerOvrCmd

double

Hold the steering command at the current value.

Steering hold

SteerHldBoolean

Disable the steering command.

Steering disable

SteerZeroBoolean

Use the Output handwheel angle parameter to specify the units for the steering ports.

Setting

Block Implementation

Port

off (default)

Commanded steer angle, normalized from -1 through 1. The block uses the tire wheel angle saturation limit Tire wheel angle limit, theta parameter to normalize the command.

SteerCmd — Output

Overrides the steering command with an input steering command normalized from -1 through 1.

SteerOvrCmd — Input

on

Commanded steer angle, in units specified by Angular units, angUnits.

SteerCmd — Output

Overrides the steering command with an input steering command, in units specified by Angular units, angUnits.

SteerOvrCmd — Input

Also, you can specify a tire wheel angle saturation limit using the Tire wheel angle limit, theta parameter.

Control Type and Units

Use the Lateral control type, controlTypeLat parameter to specify the type of lateral control. The table specifies the block implementation.

Setting

Block Implementation

Predictive (default)

Optimal single-point preview (look ahead) control model developed by C. C. MacAdam1, 2, 3. The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path.

Stanley

Controller that uses the Stanley4 method to minimize the position error and the angle error of the current pose with respect to the reference pose.

On the Reference Control pane, use the:

  • Vector input for poses parameter to input the to specify the input.

    SettingImplementation
    off (default)

    Block uses the longitudinal, lateral, and yaw reference (LongRef, LatRef, LatRef) input ports and the feedback (LongFdbk, LatFdbk, LatFdbk) input ports for the reference and feedback pose.

    on

    Block uses input ports, RefPose and CurrPose, for the reference and feedback pose, respectively.

  • Include dynamics parameter to specify the type of model for the controller to use.

    SettingImplementation
    off (default)

    Controller uses a kinematic bicycle model that is suitable for path following in low-speed environments such as parking lots, where inertial effects are minimal.

    on

    Controller uses a dynamic bicycle model that is suitable for path following in high-speed environments such as highways, where inertial effects are more pronounced.

Use the Angular units, angUnits parameter to specify the angular units for the input and output ports.

Controller: Predictive Lateral Path-Tracking

If you set Lateral control type, controlTypeLat to Predictive, the Lateral Driver block implements an optimal single-point preview (look ahead) control model developed by C. C. MacAdam1, 2, 3. The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path. To implement the MacAdam model, the block:

  • Represents the dynamics as a linear single track (bicycle) vehicle

  • Minimizes the previewed error signal at a single point T* seconds ahead in time

  • Accounts for the driver lag deriving from perceptual and neuromuscular mechanisms

This figure illustrates the block implementation of the single-point version of the driver model.

Block diagram illustrating implementation of single-point driver model

Vehicle Dynamics

For lateral and yaw motion, the block implements these linear dynamic equations.

y˙=v+Uψv˙=[2(CαF+CαR)mU]v+[2(bCαRaCαF)mUU]r+(2CαFm)δFr˙=[2(bCαRaCαF)IU]v+[2(a2CαF+b2CαR)IU]r+(2aCαFI)δFψ˙=r

In matrix notation:

x˙=Fx+gδFwhere:x=[yvrψ]F=[010U0-2CαF+CαR mU2bCαRaCαF mUU002bCαRaCαF IU-2a2CαF+b2CαR IU00010]x=[02CαFm2aCαFI0]

The single-point model assumes a minimum previewed error signal at a single point T* seconds ahead in time. a* is the driver ability to predict the future vehicle response based on the current steering control input. b* is the driver ability to predict the future vehicle response based on the current vehicle state. The block uses these equations.

a*=T*mT[I+n=1Fn(T*)n(n+1)!]gb*=mT[I+n=1Fn(T*)nn!]where: mT=[1000]

The equations use these variables.

a, b

Forward and rearward tire location, respectively

m

Vehicle mass

I

Vehicle rotational inertia

CɑF

Front tire cornering coefficient

CɑR

Rear tire cornering coefficient

a*, b*

Driver prediction scalar and vector gain, respectively

x

Predicted vehicle state vector

v

Lateral velocity

r

Yaw rate

Ψ

Front wheel heading angle

y

Lateral displacement

F

System matrix

δ, δF

Steer angle and front axle steer angle, respectively

g

Control coefficient vector

U

Forward (longitudinal) vehicle velocity

T*

Preview time window

ƒ(t+T*)

Previewed path input T* seconds ahead

U

Forward vehicle velocity

mT

Constant observer vector; provides vehicle lateral position

Optimization

The single-point model implemented by the block finds the steering command that minimizes a local performance index, J, over the current preview interval, (t, t+T).

J=1Ttt+T[f(η)y(η)]2dη

To minimize J with respect to the steering command, this condition must be met.

dJdu=0

You can express the optimal control solution in terms of a current non-optimal and corresponding nonzero preview output error T* seconds ahead1, 2, 3.

uo(t)=u(t)+e(t+T*)a*

The block uses the preview distance and vehicle longitudinal velocity to determine the preview time window.

T*=LU

The equations use these variables.

T*

Preview time window

ƒ(t+T*)

Previewed path input T* sec ahead

y(t+T*)

Previewed plant output T* sec ahead

e(t+T*)

Previewed error signal T* sec ahead

u(t), uo(t)

Steer angle and optimal steer angle, respectively

L

Preview distance

J

Performance index

U

Forward (longitudinal) vehicle velocity

Driver Lag

The single-point model implemented by the block introduces a driver lag. The driver lag accounts for the delay when the driver is tracking tasks. Specifically, it is the transport delay deriving from perceptual and neuromuscular mechanisms. To calculate the driver transport delay, the block implements this equation.

H(s)=esτ

The equations use these variables.

τ

Driver transport delay

y(t+T*)

Previewed plant output T* sec ahead

e(t+T*)

Previewed error signal T* sec ahead

u(t), uo(t)

Steer angle and optimal steer angle, respectively

J

Performance index

Controller: Stanley Lateral Path-Tracking

If you set Lateral control type, controlTypeLat to Stanley, the block implements the Stanley method4. To compute the steering angle command, the Stanley controller minimizes the position error and the angle error of the current pose with respect to the reference pose. The driving direction of the vehicle determines these error values.

To compute the steering angle command, the controller minimizes the position error and the angle error of the current pose with respect to the reference pose.

  • The position error is the lateral distance from the vehicle center-of-gravity (CG) to the reference point on the path.

  • The angle error is the angle of the vehicle with respect to reference path.

Examples

Ports

Input

expand all

Longitudinal center of mass (CM) displacement reference, in the inertial reference frame, in m.

Dependencies

To enable this port:

  • Set Lateral control type, controlTypeLat to Stanley

  • Clear Vector input for poses

Lateral center of mass (CM) displacement reference, in the inertial reference frame, in m.

Dependencies

To enable this port, do either of these:

  • Set Lateral control type, controlTypeLat to Stanley and clear Vector input for poses.

  • Set Lateral control type, controlTypeLat to Predictive.

Enable steering command override.

Dependencies

To enable this port, select Steering override.

Data Types: Boolean

Steering override command.

Use the Output handwheel angle parameter to specify the units for the steering ports.

Setting

Block Implementation

Port

off (default)

Commanded steer angle, normalized from -1 through 1. The block uses the tire wheel angle saturation limit Tire wheel angle limit, theta parameter to normalize the command.

SteerCmd — Output

Overrides the steering command with an input steering command normalized from -1 through 1.

SteerOvrCmd — Input

on

Commanded steer angle, in units specified by Angular units, angUnits.

SteerCmd — Output

Overrides the steering command with an input steering command, in units specified by Angular units, angUnits.

SteerOvrCmd — Input

Dependencies

To enable this port, select Steering override.

Data Types: double

Boolean signal that holds the steering command at the current value.

Dependencies

To enable this port, select Steering hold.

Data Types: Boolean

Disable steering command.

Dependencies

To enable this port, select Steering disable.

Data Types: Boolean

Vehicle yaw angle, Ψo, in the inertial reference frame, in units specified by Angular units, angUnits.

Dependencies

To enable this port:

  • Set Lateral control type, controlTypeLat to Stanley

  • Clear Vector input for poses

Reference pose, specified as an [x, y, Θ] vector. x and y are in meters, and Θ are in units specified by Angular units, angUnits.

x and y specify the reference point to steer the vehicle toward. Θ specifies the orientation angle of the path at this reference point and is positive in the counterclockwise direction.

The reference point is the point on the path that is closest to the vehicle CG. You can use the either the Z-up or Z-down vehicle coordinate system, as long you use the same coordinate system (Z-up or Z-down) for block inputs and parameters.

Figure indicating location of x, y, and theta on vehicle path

Dependencies

To enable this port, set Lateral control type, controlTypeLat to Stanley and select Vector input for poses.

Data Types: single | double

Longitudinal vehicle velocity, U, in the vehicle-fixed frame, in m/s.

Current pose of the vehicle, specified as an [x, y, Θ] vector. x and y are in meters, and Θ is in units specified by Angular units, angUnits.

x and y specify the location of the vehicle, which is defined as the vehicle CG. You can use the either the Z-up or Z-down vehicle coordinate system, as long you use the same coordinate system (Z-up or Z-down) for block inputs and parameters.

Figure indicating location of x, y, and theta on vehicle path

Dependencies

To enable this port, set Lateral control type, controlTypeLat to Stanley and select Vector input for poses.

Data Types: single | double

Lateral CM displacement, yo, in the inertial reference frame, in m.

Dependencies

To enable this port, do either of these:

  • Set Lateral control type, controlTypeLat to Stanley and clear Vector input for poses.

  • Set Lateral control type, controlTypeLat to Predictive.

Lateral vehicle velocity, vo , in the vehicle-fixed frame, in m/s.

Dependencies

To enable this port, Set Lateral control type, controlTypeLat to Predictive.

Vehicle yaw angle, Ψo, in the inertial reference frame, in units specified by Angular units, angUnits.

Dependencies

To enable this port, do either of these:

  • Set Lateral control type, controlTypeLat to Stanley and clear Vector input for poses.

  • Set Lateral control type, controlTypeLat to Predictive.

Yaw rate, ro, in the vehicle-fixed frame, in units specified by Angular units, angUnits per sec.

Dependencies

To enable this port, Set Lateral control type, controlTypeLat to Predictive.

Output

expand all

Bus signal containing these block calculations.

SignalVariableDescription
Predictedyy

Predicted lateral displacement, in the vehicle-fixed frame.

ydotv

Predicted lateral velocity, in the vehicle-fixed frame.

psiΨ

Predicted front wheel heading angle.

rr

Predicted yaw rate, in the vehicle-fixed frame.

SteerCmdδF

Commanded steer angle.

Erreref

Difference in reference vehicle position and vehicle position.

ErrSqrSum0teref2dt

Integrated square of error.

ErrMaxmax(eref(t))

Maximum error during simulation.

ErrMinmin(eref(t))

Minimum error during simulation.

ExtActionsEnblSteerOvr

Override the steering command with an input deceleration command.

SteerOvrCmd

Input steering override command

SteerHld

Hold the steering command at the current value

SteerZero

Disable the steering command

Commanded steer angle, δF.

Use the Output handwheel angle parameter to specify the units for the steering ports.

Setting

Block Implementation

Port

off (default)

Commanded steer angle, normalized from -1 through 1. The block uses the tire wheel angle saturation limit Tire wheel angle limit, theta parameter to normalize the command.

SteerCmd — Output

Overrides the steering command with an input steering command normalized from -1 through 1.

SteerOvrCmd — Input

on

Commanded steer angle, in units specified by Angular units, angUnits.

SteerCmd — Output

Overrides the steering command with an input steering command, in units specified by Angular units, angUnits.

SteerOvrCmd — Input

Parameters

expand all

Configuration

Select to override the steering command with an input steering command.

Dependencies

Selecting this parameter creates the EnblSteerOvr and SteerOvrCmd input ports.

Select to hold the steering command.

Dependencies

Selecting this parameter creates the SteerHld input port.

Select to disable the steering command.

Dependencies

Selecting this parameter creates the SteerZero input port.

Use the Output handwheel angle parameter to specify the units for the steering ports.

Setting

Block Implementation

Port

off (default)

Commanded steer angle, normalized from -1 through 1. The block uses the tire wheel angle saturation limit Tire wheel angle limit, theta parameter to normalize the command.

SteerCmd — Output

Overrides the steering command with an input steering command normalized from -1 through 1.

SteerOvrCmd — Input

on

Commanded steer angle, in units specified by Angular units, angUnits.

SteerCmd — Output

Overrides the steering command with an input steering command, in units specified by Angular units, angUnits.

SteerOvrCmd — Input

Dependencies

To create the SteerOvrCmd input port, select Steering override.

Use the Lateral control type, controlTypeLat parameter to specify the type of lateral control. The table specifies the block implementation.

Setting

Block Implementation

Predictive (default)

Optimal single-point preview (look ahead) control model developed by C. C. MacAdam1, 2, 3. The model represents driver steering control behavior during path-following and obstacle avoidance maneuvers. Drivers preview (look ahead) to follow a predefined path.

Stanley

Controller that uses the Stanley4 method to minimize the position error and the angle error of the current pose with respect to the reference pose.

On the Reference Control pane, use the:

  • Vector input for poses parameter to input the to specify the input.

    SettingImplementation
    off (default)

    Block uses the longitudinal, lateral, and yaw reference (LongRef, LatRef, LatRef) input ports and the feedback (LongFdbk, LatFdbk, LatFdbk) input ports for the reference and feedback pose.

    on

    Block uses input ports, RefPose and CurrPose, for the reference and feedback pose, respectively.

  • Include dynamics parameter to specify the type of model for the controller to use.

    SettingImplementation
    off (default)

    Controller uses a kinematic bicycle model that is suitable for path following in low-speed environments such as parking lots, where inertial effects are minimal.

    on

    Controller uses a dynamic bicycle model that is suitable for path following in high-speed environments such as highways, where inertial effects are more pronounced.

Input and output port angular units.

Reference Control

Predictive

Driver response time, τ, in s.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Predictive.

Driver preview distance, L, in m. Used to determine the preview time window, T*.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Predictive.

Stanley

Select this parameter to create the RefPose and CurrPose input ports.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Stanley.

The controller computes this command using the Stanley method, whose control law is based on both a kinematic and dynamic bicycle model. To change between models, use this parameter.

SettingImplementation
off

Controller uses a kinematic bicycle model that is suitable for path following in low-speed environments such as parking lots, where inertial effects are minimal.

on

Controller uses a dynamic bicycle model that is suitable for path following in high-speed environments such as highways, where inertial effects are more pronounced.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Stanley.

Position gain of the vehicle when it is in forward motion, specified as a positive scalar. This value determines how much the position error affects the steering angle. Typical values are in the range [1, 5]. Increase this value to increase the magnitude of the steering angle.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Stanley.

Position gain of the vehicle when it is in reverse motion, specified as a positive scalar. This value determines how much the position error affects the steering angle. Typical values are in the range [1, 5]. Increase this value to increase the magnitude of the steering angle.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Stanley.

Yaw rate feedback gain, specified as a nonnegative real scalar. This value determines how much weight is given to the current yaw rate of the vehicle when the block computes the steering angle command.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Stanley and select Include dynamics.

Steering angle feedback gain, specified as a nonnegative real scalar. This value determines how much the difference between the current steering angle command, SteerCmd, and the current steering angle, CurrSteer, affects the next steering angle command.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Stanley and select Include dynamics.

Vehicle Parameters

Forward location of tire, a, in m. Distance from vehicle cg to forward tire location, along vehicle longitudinal axis.

Rearward location of tire, b, in m. Absolute value of distance from vehicle cg to rearward tire location, along vehicle longitudinal axis.

Vehicle mass, m, in kg.

Dependencies

To enable this port, do either of these:

  • Set Lateral control type, controlTypeLat to Stanley and select Include dynamics.

  • Set Lateral control type, controlTypeLat to Predictive.

Cornering stiffness coefficient, CαF , in N/rad.

Dependencies

To enable this port, do either of these:

  • Set Lateral control type, controlTypeLat to Stanley and select Include dynamics.

  • Set Lateral control type, controlTypeLat to Predictive.

Cornering stiffness coefficient, CαR , in N/rad.

Dependencies

To enable this port, set Lateral control type, controlTypeLat to Predictive.

Vehicle rotational inertia, I, about the vehicle yaw axis, in N·m·s^2.

Dependencies

To enable this parameter, Set Lateral control type, controlTypeLat to Predictive.

Steering ratio, Ksteer. The value has no dimension.

Dependencies

To enable this parameter, select Output handwheel angle.

Tire wheel angle limit, θ, in rad.

References

[1] MacAdam, C. C. "An Optimal Preview Control for Linear Systems". Journal of Dynamic Systems, Measurement, and Control. Vol. 102, Number 3, Sept. 1980.

[2] MacAdam, C. C. "Application of an Optimal Preview Control for Simulation of Closed-Loop Automobile Driving ". IEEE Transactions on Systems, Man, and Cybernetics. Vol. 11, Issue 6, June 1981.

[3] MacAdam, C. C. Development of Driver/Vehicle Steering Interaction Models for Dynamic Analysis. Final Technical Report UMTRI-88-53. Ann Arbor, Michigan: The University of Michigan Transportation Research Institute, Dec. 1988.

[4] Hoffmann, Gabriel M., Claire J. Tomlin, Michael Montemerlo, and Sebastian Thrun. "Autonomous Automobile Trajectory Tracking for Off-Road Driving: Controller Design, Experimental Validation and Racing." American Control Conference. 2007, pp. 2296–2301. doi:10.1109/ACC.2007.4282788

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Version History

Introduced in R2018a