inverse
Syntax
Description
Examples
Laurent Matrix Inverse
Create the Laurent polynomials:
lpA = laurentPolynomial(Coefficients=[1 1],MaxOrder=1); lpB = laurentPolynomial(Coefficients=[1 1 0 1],MaxOrder=2); lpC = laurentPolynomial(Coefficients=[1],MaxOrder=1); lpD = laurentPolynomial(Coefficients=[1 0 0 1],MaxOrder=2);
Create the matrix lmat
= . Obtain the determinant of lmat
.
lmat = laurentMatrix(Elements={lpA,lpB;lpC,lpD}); det(lmat)
ans = laurentPolynomial with properties: Coefficients: 1 MaxOrder: -1
The determinant is a nonzero monomial. Obtain the inverse of lmat
. Inspect the elements of the inverse.
lmatinv = inverse(lmat); lmatinv.Elements{1,1}
ans = laurentPolynomial with properties: Coefficients: [1 0 0 1] MaxOrder: 3
lmatinv.Elements{1,2}
ans = laurentPolynomial with properties: Coefficients: [-1 -1 0 -1] MaxOrder: 3
lmatinv.Elements{2,1}
ans = laurentPolynomial with properties: Coefficients: -1 MaxOrder: 2
lmatinv.Elements{2,2}
ans = laurentPolynomial with properties: Coefficients: [1 1] MaxOrder: 2
Confirm the product of lmat
and its inverse is equal to the identity matrix.
matprod = lmat*lmatinv; matprod.Elements{1,1}
ans = laurentPolynomial with properties: Coefficients: 1 MaxOrder: 0
matprod.Elements{1,2}
ans = laurentPolynomial with properties: Coefficients: 0 MaxOrder: 0
matprod.Elements{2,1}
ans = laurentPolynomial with properties: Coefficients: 0 MaxOrder: 0
matprod.Elements{2,2}
ans = laurentPolynomial with properties: Coefficients: 1 MaxOrder: 0
Input Arguments
M
— Laurent matrix
laurentMatrix
object
Laurent matrix, specified as a laurentMatrix
object.
Output Arguments
R
— Inverse
laurentMatrix
object
Inverse of a Laurent matrix, returned as a laurentMatrix
object.
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Version History
Introduced in R2021b
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)