wlanHTLTF
Generate HT-LTF waveform
Description
Examples
Generate Single-Stream HT-LTF Waveform
Create a wlanHTConfig
object having a channel bandwidth of 40 MHz.
cfg = wlanHTConfig('ChannelBandwidth','CBW40');
Generate the corresponding HT-LTF.
hltfOut = wlanHTLTF(cfg); size(hltfOut)
ans = 1×2
160 1
The cfg
parameters result in a 160-sample waveform having only one column corresponding to a single stream transmission.
Generate Oversampled HT-LTF with Four Space-Time Streams
Generate an oversampled HT-LTF waveform with four transmit antennas and four space-time streams.
Create a wlanHTConfig
configuration with MCS index 31
, four transmit antennas, and four space-time streams.
cfg = wlanHTConfig('MCS',31,'NumTransmitAntennas',4,'NumSpaceTimeStreams',4)
cfg = wlanHTConfig with properties: ChannelBandwidth: 'CBW20' NumTransmitAntennas: 4 NumSpaceTimeStreams: 4 SpatialMapping: 'Direct' MCS: 31 GuardInterval: 'Long' ChannelCoding: 'BCC' PSDULength: 1024 AggregatedMPDU: 0 RecommendSmoothing: 1
Specify an oversampling factor and generate the corresponding HT-LTF waveform.
osf = 4; y = wlanHTLTF(cfg,OversamplingFactor=osf);
Verify that the waveform output consists of four streams (one for each antenna). Because the channel bandwidth is 20 MHz and the waveform is oversampled and has four space-time streams, the waveform has four HT-LTF and 1280 time-domain samples.
size(y)
ans = 1×2
1280 4
Input Arguments
cfg
— Transmission parameters
wlanHTConfig
object
Transmission parameters, specified as a wlanHTConfig
object.
osf
— Oversampling factor
1
(default) | scalar greater than or equal to 1
Oversampling factor, specified as a scalar greater than or equal to 1. The oversampled cyclic prefix length must be an integer number of samples.
Data Types: single
| double
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
Output Arguments
y
— HT-LTF waveform
matrix
HT-LTF waveform, returned as an (NS × NHTLTF)-by-NT matrix. NS is the number of time domain samples per NHTLTF, where NHTLTF is the number of OFDM symbols in the HT-LTF. NT is the number of transmit antennas.
NS is proportional to the channel bandwidth. Each symbol contains 80 time samples per 20 MHz channel.
ChannelBandwidth | NS |
---|---|
'CBW20' | 80 |
'CBW40' | 160 |
Determination of the number of NHTLTF is described in HT-LTF.
Data Types: double
Complex Number Support: Yes
More About
HT-LTF
The high throughput long training field (HT-LTF) is located between the HT-STF and data field of an HT-mixed packet.
As described in Section 19.3.9.4.6 of IEEE® Std 802.11™-2016, the receiver can use the HT-LTF to estimate the MIMO channel between the set of QAM mapper outputs (or, if STBC is applied, the STBC encoder outputs) and the receive chains. The HT-LTF portion has one or two parts. The first part consists of one, two, or four HT-LTFs that are necessary for demodulation of the HT-Data portion of the PPDU. These HT-LTFs are referred to as HT-DLTFs. The optional second part consists of zero, one, two, or four HT-LTFs that can be used to sound extra spatial dimensions of the MIMO channel not utilized by the HT-Data portion of the PPDU. These HT-LTFs are referred to as HT-ELTFs. Each HT long training symbol is 4 μs. The number of space-time streams and the number of extension streams determines the number of HT-LTF symbols transmitted.
Tables 19-12, 19-13 and 90-14 from IEEE Std 802.11-2012 are reproduced here.
NSTS
Determination | NHTDLTF
Determination | NHTELTF
Determination | |||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Table 19-12 defines the number of space-time streams (NSTS) based on the number of spatial streams (NSS) from the MCS and the STBC field. | Table 19-13 defines the number of HT-DLTFs required for the NSTS. | Table 19-14 defines the number of HT-ELTFs required for the number of extension spatial streams (NESS). NESS is defined in HT-SIG2. | |||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
Additional constraints include:
NHTLTF = NHTDLTF + NHTELTF ≤ 5.
NSTS + NESS ≤ 4.
When NSTS = 3, NESS cannot exceed one.
If NESS = 1 when NSTS = 3 then NHTLTF = 5.
HT-mixed
As described in IEEE Std 802.11-2012, Section 20.1.4, high throughput mixed (HT-mixed) format packets contain a preamble compatible with IEEE Std 802.11-2012, Section 18 and Section 19 receivers. Non-HT (Section 18 and Section19) STAs can decode the non-HT fields (L-STF, L-LTF, and L-SIG). The remaining preamble fields (HT-SIG, HT-STF, and HT-LTF) are for HT transmission, so the Section 18 and Section 19 STAs cannot decode them. The HT portion of the packet is described in IEEE Std 802.11-2012, Section 20.3.9.4. Support for the HT-mixed format is mandatory.
PPDU
The physical layer (PHY) protocol data unit (PPDU) is the complete physical layer convergence procedure (PLCP) frame, including PLCP headers, MAC headers, the MAC data field, and the MAC and PLCP trailers.
References
[1] IEEE Std 802.11™-2012 IEEE Standard for Information technology — Telecommunications and information exchange between systems — Local and metropolitan area networks — Specific requirements — Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications.
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Version History
Introduced in R2015b
See Also
wlanHTConfig
| wlanLLTF
| wlanHTData
| wlanHTLTFDemodulate
| wlanHTLTFChannelEstimate
1 IEEE Std 802.11-2012 Adapted and reprinted with permission from IEEE. Copyright IEEE 2012. All rights reserved.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)