Is it possible to detect a specefic form of matrices from a big one?

1 次查看(过去 30 天)
Hello, I need to find those 5 forms of matrices from a binary 'big' matrice
X=[1 0 1 ;
0 1 0 ;
1 0 1 ;];
Y=[1 0 1 ;
0 1 0 ;
1 0 0 ;];
O=[0 1 0 ;
1 0 1 ;
0 1 0 ;];
-=[0 0 0 ;
1 1 1 ;
0 0 0 ;];
L=[1 0 0 ;
1 0 0 ;
1 1 1 ;];
Any idea? help is much appreciated

采纳的回答

Cedric
Cedric 2013-11-21
编辑:Cedric 2013-11-22
EDITED: got rid of a side effect in the dash case (illustrated in the 4th picture below.. I didn't update it though) by using 2*A-1 instead of A and numel(X) instead of nnz(X).
Someone might provide you with a solution based on the Image Processing Toolbox (which I am not familiar with). Here is one potential solution and a hint in the meantime..
1. Based on CONV2
A = double( rand(10) > 0.4 ) ; % Small example.
X = [1 0 1 ; ...
0 1 0 ; ...
1 0 1 ] ;
ker = rot90(rot90( 2*X -1 )) ;
[r, c] = find( conv2(2*A-1, ker, 'same') == numel(X) ) ;
With that and a few runs (need a little luck for RAND to output one or more fillings with matches):
>> A
A =
1 1 1 1 1 1 0 1 0 1
0 0 0 1 1 0 1 1 0 1
1 0 0 0 0 1 0 1 0 1
1 0 1 0 1 0 1 1 1 1
0 1 0 1 0 1 1 1 1 0
0 1 1 0 1 0 0 1 1 0
0 1 1 0 1 1 0 0 0 1
0 1 0 0 1 0 1 1 1 1
0 1 0 1 1 1 1 0 1 1
1 1 0 1 0 1 1 1 0 0
>> [r,c]
ans =
5 4
3 6
which indicates two matches, centered in (5,4) and (3,6). This approach takes ~13ms on my laptop with a 1000x1001 A matrix.
2. By looping over elements of patterns and vectorizing tests on A rather than the opposite.
.. I leave that for later if CONV2 is not suitable.
--------------------------------------------------------------------------------------------------------------------------------
EDIT: here is a more elaborate example..
n = 50 ;
A = double( rand(n, n+1) > 0.5 ) ;
B = 2*A - 1 ;
patterns = {[1 0 1; 0 1 0; 1 0 1]; ... % X
[1 0 1; 0 1 0; 1 0 0]; ... % Y
[0 1 0; 1 0 1; 0 1 0]; ... % O
[0 0 0; 1 1 1; 0 0 0]; ... % -
[1 0 0; 1 0 0; 1 1 1]} ; % L
labels = {'X', 'Y', 'O', '-', 'L'} ;
matches = cell( size(labels )) ;
for pId = 1 : numel( patterns )
nel = numel( patterns{pId} ) ;
ker = 2*patterns{pId} - 1 ;
[r, c] = find( conv2(B, rot90(rot90(ker)), 'same') == nel ) ;
matches{pId} = [r, c] ;
figure(pId) ; clf ; hold on ;
spy(A) ;
plot( c, r, 'r+', 'MarkerSize', 20 ) ;
title( sprintf( 'Matches for "%s" pattern', labels{pId} )) ;
set( gcf, 'Units', 'normalized' ) ;
set( gcf, 'Position', [0 0 0.4 0.7] ) ;
end
which outputs the following figures..
  6 个评论
Cedric
Cedric 2013-11-28
编辑:Cedric 2013-11-28
Ok, this is quite different from what the initial question suggested. I would advise you to re-post the question including images of the skeleton and zooms over regions which represent the different patterns. You should also attach the source array or image so people can perform tests.
mika
mika 2014-1-13
Hello,
Can you tell me please how to make the output into the same plot. i'm trying to make the result as one plot but in vain can you help me please.
thank you.

请先登录,再进行评论。

更多回答(2 个)

talha
talha 2013-11-21
how to connect blocks of two different library together ?

Image Analyst
Image Analyst 2013-11-26
Try normalized cross correlation (see attached demo below in blue text), or the hit or miss transform, done by bwhitmiss() in the Image Processing Toolbox.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by