can i know how to change this code to obtain the fetal ecg

2 次查看(过去 30 天)
Model Constants
%--------------------------------------------------------------------------
% State-error Jacobian
W = [ 1 0 ;
0 0 ];
% Measurement-state Jacobian
H = [ 1 0 ;
0 1 ];
% Measurement-error Jacobian
V = [ 1 0 ;
0 1 ];
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% State variable initializations
%--------------------------------------------------------------------------
% Number of iterations
N = 1000;
% True State
x = zeros(2,N);
% Apriori state estimates
x_apriori = zeros(2,N);
% Aposteriori state estimates
x_aposteriori = zeros(2,N);
% Apriori error covariance estimates
P_apriori = zeros(2,2,N);
% Aposteriori error covariance estimates
P_aposteriori = zeros(2,2,N);
% Measurements
z = zeros(2,N);
% Kalman Gain
K = zeros(2,2,N);
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% Knobs to turn
%--------------------------------------------------------------------------
% True initial state
x(:,1) = [ 0 ;
3*pi/500 ];
% Initial aposteriori state estimate
x_aposteriori(:,1) = [ 1 ;
1*pi/500 ];
% Process noise covariance
Q = [ 0.001 0 ;
0 0 ];
% Measurement noise covariance
R = [ 0.1 0 ;
0 0.01 ];
% Initial aposteriori error covariance estimate
P_aposteriori(:,:,1) = [ 1 0 ;
0 1 ];
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% Perform extend Kalman filtering
%--------------------------------------------------------------------------
for i = 2:N
% Update true state
x(:,i) =uigetfile('*.dat','Load standard format file');
%[sin(x(2,i-1)*(i-1));x(2,i-1)] + sqrt(Q)*[randn;randn];
% Update measurements
z(:,i) = x(:,i) + sqrt(R)*[randn;randn];
% Update apriori estimate
x_apriori(:,i) = [sin(x_aposteriori(2,i-1)*(i-1));x_aposteriori(2,i-1)];
% Update state Jacobian
Ai = [0 (i-1)*cos(x_aposteriori(2,i-1)*(i-1)) ;
0 1 ];
% Assume knowledge of Q and R (Use system I.D. techniques in practice)
Qi = Q;
Ri = R;
% Update aprioiri error covariance estimate
P_apriori(:,:,i) = Ai*P_aposteriori(:,:,i-1)*Ai' + W*Qi*W';
% Update Kalman gain
K(:,:,i) = P_apriori(:,:,i)*H' / (H*P_apriori(:,:,i)*H'+V*Ri*V');
% Update aposteriori state estimate
x_aposteriori(:,i) = x_apriori(:,i) + K(:,:,i) * (z(:,i) - x_apriori(:,i));
% Update aposteriori error covariance estimate
P_aposteriori(:,:,i) = (eye(2) - K(:,:,i)*H) * P_apriori(:,:,i);
end
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% Plot Results
%--------------------------------------------------------------------------
figure
subplot(2,1,1)
% Actual state position
b = plot(2:N,x(1,2:N),'b');
hold on
% State position estimates
r = plot(2:N,x_aposteriori(1,2:N),'r');
% State measurements
g = plot(2:N,z(1,2:N),'g+');
title('Extended Kalman Filtering of a Sine Wave - Position');
legend([b r g],'True Position','Position Estimates','Position Measurements');
xlabel('Time')
ylabel('Position')
grid on
subplot(2,1,2)
% Actual state frequency
b = plot(2:N,x(2,2:N),'b');
hold on
% State frequency estimates
r = plot(2:N,x_aposteriori(2,2:N),'r');
% Frequency measurements
g = plot(2:N,z(2,2:N),'g+');
title('Extended Kalman Filtering of a Sine Wave - Frequency');
legend([b r g],'True Frequency','Frequency Estimates','Frequency Measurements');
xlabel('Time')
ylabel('Frequency')
grid on

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Simulation 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by