can i know how to change this code to obtain the fetal ecg
2 次查看(过去 30 天)
显示 更早的评论
Model Constants
%--------------------------------------------------------------------------
% State-error Jacobian
W = [ 1 0 ;
0 0 ];
% Measurement-state Jacobian
H = [ 1 0 ;
0 1 ];
% Measurement-error Jacobian
V = [ 1 0 ;
0 1 ];
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% State variable initializations
%--------------------------------------------------------------------------
% Number of iterations
N = 1000;
% True State
x = zeros(2,N);
% Apriori state estimates
x_apriori = zeros(2,N);
% Aposteriori state estimates
x_aposteriori = zeros(2,N);
% Apriori error covariance estimates
P_apriori = zeros(2,2,N);
% Aposteriori error covariance estimates
P_aposteriori = zeros(2,2,N);
% Measurements
z = zeros(2,N);
% Kalman Gain
K = zeros(2,2,N);
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% Knobs to turn
%--------------------------------------------------------------------------
% True initial state
x(:,1) = [ 0 ;
3*pi/500 ];
% Initial aposteriori state estimate
x_aposteriori(:,1) = [ 1 ;
1*pi/500 ];
% Process noise covariance
Q = [ 0.001 0 ;
0 0 ];
% Measurement noise covariance
R = [ 0.1 0 ;
0 0.01 ];
% Initial aposteriori error covariance estimate
P_aposteriori(:,:,1) = [ 1 0 ;
0 1 ];
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% Perform extend Kalman filtering
%--------------------------------------------------------------------------
for i = 2:N
% Update true state
x(:,i) =uigetfile('*.dat','Load standard format file');
%[sin(x(2,i-1)*(i-1));x(2,i-1)] + sqrt(Q)*[randn;randn];
% Update measurements
z(:,i) = x(:,i) + sqrt(R)*[randn;randn];
% Update apriori estimate
x_apriori(:,i) = [sin(x_aposteriori(2,i-1)*(i-1));x_aposteriori(2,i-1)];
% Update state Jacobian
Ai = [0 (i-1)*cos(x_aposteriori(2,i-1)*(i-1)) ;
0 1 ];
% Assume knowledge of Q and R (Use system I.D. techniques in practice)
Qi = Q;
Ri = R;
% Update aprioiri error covariance estimate
P_apriori(:,:,i) = Ai*P_aposteriori(:,:,i-1)*Ai' + W*Qi*W';
% Update Kalman gain
K(:,:,i) = P_apriori(:,:,i)*H' / (H*P_apriori(:,:,i)*H'+V*Ri*V');
% Update aposteriori state estimate
x_aposteriori(:,i) = x_apriori(:,i) + K(:,:,i) * (z(:,i) - x_apriori(:,i));
% Update aposteriori error covariance estimate
P_aposteriori(:,:,i) = (eye(2) - K(:,:,i)*H) * P_apriori(:,:,i);
end
%--------------------------------------------------------------------------
%--------------------------------------------------------------------------
% Plot Results
%--------------------------------------------------------------------------
figure
subplot(2,1,1)
% Actual state position
b = plot(2:N,x(1,2:N),'b');
hold on
% State position estimates
r = plot(2:N,x_aposteriori(1,2:N),'r');
% State measurements
g = plot(2:N,z(1,2:N),'g+');
title('Extended Kalman Filtering of a Sine Wave - Position');
legend([b r g],'True Position','Position Estimates','Position Measurements');
xlabel('Time')
ylabel('Position')
grid on
subplot(2,1,2)
% Actual state frequency
b = plot(2:N,x(2,2:N),'b');
hold on
% State frequency estimates
r = plot(2:N,x_aposteriori(2,2:N),'r');
% Frequency measurements
g = plot(2:N,z(2,2:N),'g+');
title('Extended Kalman Filtering of a Sine Wave - Frequency');
legend([b r g],'True Frequency','Frequency Estimates','Frequency Measurements');
xlabel('Time')
ylabel('Frequency')
grid on
0 个评论
回答(0 个)
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!