gaussian kernel smoothing, how to optimize parameter sigma?
3 次查看(过去 30 天)
显示 更早的评论
Hi, my question is how to find an optimal standard deviation for the gaussian kernel filter smoothing?
too large, we are losing amplitude, too small, it can be still noisy
Are there standard methods to optimize this choice? on which metrics?
x= (0:0.1:7)';
y = sin(x);
y_=y + 0.3*randn(size(y)); %noisy signal
y__ = zeros(length(x), 3); % reconstructs
for i=1:length(x)
%test different gaussian sigmas
k = exp( -(x-repmat(x(i),length(x),1)).^2 / (2*.2^2) ) ;
y__(i,1) = k'*y_ / sum(k);
k = exp( -(x-repmat(x(i),length(x),1)).^2 / (2*.5^2) ) ;
y__(i,2) = k'*y_ / sum(k);
k = exp( -(x-repmat(x(i),length(x),1)).^2 / (2*.8^2) ) ;
y__(i,3) = k'*y_ / sum(k);
end
plot([y y_ y__])
0 个评论
回答(1 个)
Junpeng Lao
2015-10-9
Hey Cyril, I come across this paper might be related to your question: http://www.princeton.edu/~samory/Papers/adaptiveKR.pdf
0 个评论
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!