Replacing the column of array elements with NaN.
7 次查看(过去 30 天)
显示 更早的评论
Given an array A = [0 11; 0.1 2; 0.2 5; 0.3 3; 0.4 6; 0.5 7; 0.6 10; 0.7 4; 0.8 5; 0.9 6; 1 12]; and array x = [0.2,0.4 ; 0.6,0.9];. I would like to manipulate the second column. with respect to the array x. Out_Arr = [0 NaN; 0.1 NaN; 0.2 5; 0.3 3; 0.4 6; 0.5 NaN; 0.6 10; 0.7 4; 0.8 5; 0.9 6; 1 NaN]; Could any one help on this?
0 个评论
采纳的回答
Geoff Hayes
2014-5-29
编辑:Geoff Hayes
2014-5-29
It seems that the rows of x indicate which ranges of values in A should be preserved, with the rest of the entries in the second column of matrix A set to NaN. A looping solution is as follows:
% pre-allocate array of indices indicating values in A to keep/preserve
keepInA = zeros(size(A(:,2)));
% loop over all rows of x
for i=1:size(x,1)
% find where in the first column of A are the two values for the ith row of x
mems = ismember(A(:,1),x(i,:));
% set that range in keepInA to be all ones indicating all values in that range
% are to be kept (there's is probably a better way to do this)
keepInA(find(mems,1,'first'):find(mems,1,'last')) = 1;
% now just set all those elements in the second row of A to be NaN if they
% are NOT to be kept (i.e. zero)
A(keepInA==0,2) = NaN;
The above assumes that there is no overlap of ranges in x and that those ranges can be found in A. If the assumptions are not true, then the above code would have to be modified.
2 个评论
Geoff Hayes
2014-5-29
I think that there will always be a loop, whether it is implicit or explicit like the above. Here is a crazy different approach that has no explicit loop:
y = x'; % transpose x so that ranges are column-wise
z = ismember(A(:,1),y(:)); % note that the second input is a column
k = or(z,mod(cumsum(z),2));
A(k==0,2) = NaN;
So what is going on in the above? We convert x to a column vector (via the assignment to y and y(:)) so that the ismember returns a combination of the outputs from ismember in the previous code but as one vector:
z =
0
0
1
0
1
0
1
0
0
1
0
Which is almost okay but we need to fill in all the zeroes in between two neighbouring ones so that we get the correct ranges. If we do a cumulative sum via cumsum then we see
0
0
1
1
2
2
3
3
3
4
4
which is not quite what we want. In fact, all we really want are the odd numbers and the first even number that follows the set of consecutive odd numbers. We can remove all even numbers via mod(cumsum(z),2)) and then "add" back in the missing ones (corresponding to 0.4 and 0.9) via or, so that
or(z,mod(cumsum(z),2));
0
0
1
1
1
0
1
1
1
1
0
is the list of indices that we wish to preserve/keep. So the 5 lines (or so) of the above for loop could be replaced by the 3-4 lines from above. Is it any better? Probably not as this logic is more confusing to follow than the straight-forward for loop.
更多回答(3 个)
Andrei Bobrov
2014-5-29
Out_Arr = A;
Out_Arr(all(bsxfun(@lt,A(:,1),x(:,1)')|bsxfun(@gt,A(:,1),x(:,2)'),2),2) = nan;
0 个评论
Udit Gupta
2014-5-29
This should do the trick -
index1 = A(:,1)<x(1,1) | A(:,1)>x(1,2);
index2 = A(:,1)<x(2,1) | A(:,1)>x(2,2);
A(index1 & index2, 2) = NaN
2 个评论
Udit Gupta
2014-5-29
Put it in a loop and give replace x(1,1), x(1,2) etc. by x(i,1) and x(1,2). You can successively apply and (&) operator to the index and at the end of the loop perform the operation.
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Matrices and Arrays 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!