Determining indices upon which a sequence of real numbers is convex
1 次查看(过去 30 天)
显示 更早的评论
I have a vector, X, of real numbers which has a minimum at index k, where 1<k<n.
I want to determine the smallest index k1 and largest index k2, for which the sequence is strictly convex on k1,..,k,...k2. Here, convexity means 2X(i) < X(i-1)+X(i+1) for k1+1<=i<=k2-1.
In calculus terms, this question is analogous to determining the largest subinterval about a local minimum upon which the function's second derivative is positive.
0 个评论
采纳的回答
Roger Stafford
2014-6-25
k1 = k+1-find(diff([x(k+1:-1:1),-inf],2)<=0,'first');
k2 = k-1+find(diff([x(k-1:n),-inf],2)<=0,'first');
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Calculus 的更多信息
产品
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!