Curve fitting with integral involved

3 次查看(过去 30 天)
Hello. I am having trouble generating an equation to estimate parameters given a set of data for B and T. I am about to use lsqcurve fitting but for some reason i could not make the code run.
The equation should be in the form of :
See below:
T = [120,210,400,540,650];
B = [-344,-157,-17.5,-0.85,10.5];
fun = @(constant,T)(int(((2.*pi.*(constant(1)).^3)./3).*(1-exp((-4.*constant(2)./T)*((1./y.^4)-(1./y.^2)))),y,0,10));
T0 = [110,200]; %I just entered a random number, but don't know what this is for
T = lsqcurvefit(fun,T0,T,B);
The error I am getting is:
Unrecognized function or variable 'y'.
Error in
samplesept19>@(constant,T)(int(((2.*pi.*(constant(1)).^3)./3).*(1-exp((-4.*constant(2)./T)*((1./y.^4)-(1./y.^2)))),y,0,10))
(line 9)
fun =
@(constant,T)(int(((2.*pi.*(constant(1)).^3)./3).*(1-exp((-4.*constant(2)./T)*((1./y.^4)-(1./y.^2)))),y,0,10));
Error in lsqcurvefit (line 225)
initVals.F = feval(funfcn_x_xdata{3},xCurrent,XDATA,varargin{:});
Error in samplesept19 (line 12)
T = lsqcurvefit(fun,T0,T,B);
Caused by:
Failure in initial objective function evaluation. LSQCURVEFIT cannot continue.
Hoping for answers and help. :) Thank you so much!

采纳的回答

Walter Roberson
Walter Roberson 2021-9-19
format long g
T = [120,210,400,540,650];
B = [-344,-157,-17.5,-0.85,10.5];
syms t y
syms constant [1 2]
expr = ((2.*pi.*(constant(1)).^3)./3).*(1-exp((-4.*constant(2)./t)*((1./y.^4)-(1./y.^2))))
expr = 
intexpr = int(expr, y, 0, 10)
intexpr = 
RHS = 2/3.*pi.*(constant(1)).^3 .* intexpr;
fun = matlabFunction(RHS, 'vars', {constant, t})
fun = function_handle with value:
@(in1,t)in1(:,1).^3.*pi.*integral(@(y)in1(:,1).^3.*pi.*(exp((in1(:,2).*(1.0./y.^2-1.0./y.^4).*4.0)./t)-1.0).*(-2.0./3.0),0.0,1.0e+1).*(2.0./3.0)
obj = @(P,T) arrayfun(@(t) fun(P,t), T)
obj = function_handle with value:
@(P,T)arrayfun(@(t)fun(P,t),T)
P0 = [110,200]; %I just entered a random number, but don't know what this is for
P = lsqcurvefit(obj, P0, T(:), B(:))
Local minimum possible. lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the value of the function tolerance.
P = 1×2
1.6038792022093 184.707909161448
B2_predicted = obj(P,T(:));
plot(T, B, 'k*', T, B2_predicted, 'b-+')
legend({'original B', 'predicted B'}, 'location', 'best')
  3 个评论
Walter Roberson
Walter Roberson 2021-9-20
P(1) is constant(1) and P(2) is constant(2)
lvenG
lvenG 2021-9-20
@Walter Roberson, thank you so much Sir. This worked.... Really, thanks for the help and enlightenment... Hope you are having a great day! Stay safe.

请先登录,再进行评论。

更多回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Spline Postprocessing 的更多信息

标签

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by