How do I get formula for the nth term of this on matlab?

9 次查看(过去 30 天)
sqrt(1+2sqrt(1+3sqrt(1+4sqrt(1+...))))
I know this limit is 3...but I need to get matlab to give me the first 40 terms. I am confused on how to code it.
  3 个评论
cakey
cakey 2014-9-24
I am not sure what that entrails. I keep trying to figure out a formula but nothing works.
Alberto
Alberto 2014-9-24
I think the sucession should be like this:
a_1=sqrt(1)
a_2=sqrt(1 + 2*sqrt(1))
a_3=sqrt(1 + 2*sqrt(1 + 3*sqrt(1)))
...
Has the same limit and doesn't need initial value for recursion.

请先登录,再进行评论。

采纳的回答

Image Analyst
Image Analyst 2014-9-24
What would be inside the parentheses of the 40th sqrt()? Just a 1?
Try a for loop and see what happens
s(40) = 1;
for k = 39 : -1 : 1
s(k) = k * sqrt(s(k+1)+1)
end
  8 个评论
Image Analyst
Image Analyst 2014-9-25
There is no "a". If you want, put a semicolon at the end of the s(k) line and just put s on its own line after the loop to have it print out the whole array.
cakey
cakey 2014-9-25
I keep, but it won't give me whole array appears to only give value of s(n) only. After I have array, how can I plot it to see graph?

请先登录,再进行评论。

更多回答(3 个)

Stephen23
Stephen23 2014-9-24
编辑:Stephen23 2014-9-24
You could try writing a for loop. The loop would just need to increment down itr = 40:-1:1, and calculates itr*sqrt(1+last_val) , with last_value defined before the loop (what value?).
Check it first with a small number of iterations first (1, 2, 3), to confirm that it calculates the expected values. Then try it with more iterations.

Roger Stafford
Roger Stafford 2014-9-24
编辑:Roger Stafford 2014-9-24
It doesn't matter what you initialize it at, the limit as n approaches infinity is always 2, not 3.
Correction: You were right. I was in error. The limit is always 3 no matter what your initial value is.

Roger Stafford
Roger Stafford 2014-9-25
编辑:Roger Stafford 2014-9-25
Since I made an error in my first answer, here is a bit more information. The problem can be expressed this way:
x(1) = sqrt(1+2*x(2))
x(2) = sqrt(1+3*x(3))
x(3) = sqrt(1+4*x(4))
...
x(n-1) = sqrt(1+n*x(n))
Now suppose x(n) were equal to n+2. Then
x(n-1) = sqrt(1+n*(n+2)) = sqrt((n+1)^2) = n+1
x(n-2) = sqrt(1+(n-1)*(n+1)) = sqrt(n^2) = n
...
x(1) = 3
However, if x(n) is not equal to n+2, express its ratio to n+2 as x(n)/(n+2) = 1+e(n). Then we have
1+e(n-1) = x(n-1)/(n+1)
= sqrt((1+n*(n+2)*(1+e(n)))/(n+1)^2)
= sqrt(1+n*(n+2)/(n+1)^2*e(n))
e(n-1) = sqrt(1+n*(n+2)/(n+1)^2*e(n)) - 1
This will always approach zero for sufficiently large n to start with and hence the limit for x(1) must be 3 no matter what the initial value is.

类别

Help CenterFile Exchange 中查找有关 Matrix Indexing 的更多信息

产品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by