%% Problem 3
%Part a: Create a function called height that accepts time as an imput and
%returns the height of the rocket.
function h = height(t)
% HEIGHT Brief summary of this function.
%
% Detailed explanation of this function.
h = (-(5.4/2).*t.^2)+(130.*t)+450;
%%
%Part b: Plot height versus time for times from 0 to 30 seconds and
%incriment of 0.5 seconds
figure(1);
t=[0:0.5:30];
h=height(t);
plot(t,h);
title('Path of the rocket');
xlabel('Time');
ylabel('Height');
%%
%Part c: Find the time wen the rocket starts to fall back to the ground
t=[0:0.5:30];
h=height(t);
[h_max,time]=max(h);
T_hmax=t(time);
fprintf('The time at which the rocket starts fallins in %d sec \n',T_hmax);
The time at which the rocket starts fallins in 24 sec
end
%% Problem 4
%Part a: Create a function hanfle to the highet function
function height = height_handle(t)
% HEIGHT_HANDLE Brief summary of this function.
%
% Detailed explanation of this function.
height = (-(5.4/2).*t.^2)+(130.*t)+450;
%%
%Part b: Use height_handle as input to the fplot function, and crate a
%graph from 0-60 seconds
height=@(t)-(5.4/2).*t.^2+(130.*t)+450;
height =
function_handle with value:
@(t)-(5.4/2).*t.^2+(130.*t)+450;
figure(2)
fplot(height,[0,60])
title('Height vs. Time')
xlabel('Time')
ylabel('Height')
%%
%Use the fzero function to find the time when the rockt hits the ground
fzero(height,0);
ans =
-3.2431
end
%% Problem 5
%Create a function that crates a polygon with n mumber of sides.
function polygon()
% POLYGON Brief summary of this function.
%
% Detailed explanation of this function.
n=input('Enter the number of sides for the polygon:\n');
theta=[0:2.*pi/n:2*pi];
r=ones(1,length(theta));
polar(theta,r);
title('Polygon');
%Run the function
figure(3);
polygon
Enter the number of sides for the polygon:
3
figure(4);
polygon
Enter the number of sides for the polygon:
4
figure(5);
polygon
Enter the number of sides for the polygon:
5
figure(6);
polygon
Enter the number of sides for the polygon:
6
end