Unable to perform assignment because the size of the left side is 1-by-1 and the size of the right side is 1-by-3. How to solve this?
2 次查看(过去 30 天)
显示 更早的评论
clc;
clear all;
outputFolder=fullfile('recycle101');
rootFolder=fullfile(outputFolder,'recycle');
categories={'can','plastic','drinkcartonbox'};
imds=imageDatastore(fullfile(rootFolder,categories),'LabelSource','foldernames');
tbl=countEachLabel(imds)
minSetCount=min(tbl{:,2});
imds=splitEachLabel(imds,minSetCount,'randomize');
countEachLabel(imds);
can=find(imds.Labels=='can',1); %randomly choose file for can
plastic=find(imds.Labels=='plastic',1);
drinkcartonbox=find(imds.Labels=='drinkcartonbox',1);
figure %plot iamge that was pick randomly
subplot(2,2,1);
imshow(readimage(imds,can));
subplot(2,2,2);
imshow(readimage(imds,plastic));
subplot(2,2,3);
imshow(readimage(imds,drinkcartonbox));
net=resnet50();
figure
plot(net)
title('Architecture of ResNet-50')
set(gca,'YLim',[150 170]);
net.Layers(1);
net.Layers(end)
numel(net.Layers(end).ClassNames)
[trainingSet,testSet]=splitEachLabel(imds,0.3,'randomize');
imageSize=net.Layers(1).InputSize;
augmentedTrainingSet=augmentedImageDatastore(imageSize,...
trainingSet,'ColorPreprocessing','gray2rgb');
augmentedTestSet=augmentedImageDatastore(imageSize,...
testSet,'ColorPreprocessing','gray2rgb');
w1=net.Layers(2).Weights;
w1=mat2gray(w1);
figure
montage(w1)
title('First Concolutional Layer Weight')
featureLayer='fc1000';
trainingFeatures=activations(net,...
augmentedTrainingSet,featureLayer,'MiniBatchSize',32,'OutputAs','columns');
trainingLabels=trainingSet.Labels;
classifier=fitcecoc(trainingFeatures,trainingLabels,...
'Learner','Linear','Coding','onevsall','ObservationsIn','columns');
testFeatures=activations(net,...
augmentedTestSet,featureLayer,'MiniBatchSize',32,'OutputAs','columns');
predictLabels=predict(classifier,testFeatures,'ObservationsIn','columns');
testLabels=testSet.Labels;
confMat=confusionmat(testLabels,predictLabels);
confMat=bsxfun(@rdivide,confMat,sum(confMat,2));
z=mean(diag(confMat));
Accuracy=sum( diag (confMat)) / sum (confMat(:)) *100
[XTrain,YTrain] = digitTrain4DArrayData;
idx = randperm(size(XTrain,4),403);
XValidation = XTrain(:,:,:,idx);
XTrain(:,:,:,idx) = [];
YValidation = YTrain(idx);
YTrain(idx) = [];
layers = [
imageInputLayer([28 28 1])
convolution2dLayer(3,8,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,16,'Padding','same')
batchNormalizationLayer
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(3,32,'Padding','same')
batchNormalizationLayer
reluLayer
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
options = trainingOptions('sgdm', ...
'MaxEpochs',8, ...
'ValidationData',{XValidation,YValidation}, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
NET = trainNetwork(XTrain,YTrain,layers,options);
load fisheriris
species = categorical(species);
G = categories(species) % Class names
numClasses = size(G,1);
H = countcats(species) % Number of observations in each class
rng('default') % For reproducibility
cv = cvpartition(species,'KFold',5,'Stratify',false)
numFolds = cv.NumTestSets;
nTestData = zeros(numFolds,numClasses);
for i = 1:numFolds
testClasses = species(cv.test(i));
nCounts = countcats(testClasses); % Number of test set observations in each class
nTestData(i,:) = nCounts';
end
bar(nTestData)
xlabel('Test Set (Fold)')
ylabel('Number of Observations')
title('Nonstratified Partition')
legend(g)
6 个评论
Image Analyst
2021-10-15
That's not all the red text. I know because the red text would give a line number and the actual line of code. Again, read the link I gave you and then paste ALL THE RED TEXT back here.
The code you gave two comments ago runs fine up until the
legend(g);
line because you didn't define g. There is no error about trying to put a 3 element vector into a single element.
Dave B
2021-10-15
@TAN HOR YAN - are you sure you got the relevant code snippet? This bit runs okay (I updated the g to G because, as noted, there's no g defined).
load fisheriris
species = categorical(species);
G = categories(species) % Class names
numClasses = size(G,1);
H = countcats(species) % Number of observations in each class
rng('default') % For reproducibility
cv = cvpartition(species,'KFold',5,'Stratify',false)
numFolds = cv.NumTestSets;
nTestData = zeros(numFolds,numClasses);
for i = 1:numFolds
testClasses = species(cv.test(i));
nCounts = countcats(testClasses); % Number of test set observations in each class
nTestData(i,:) = nCounts';
end
bar(nTestData)
xlabel('Test Set (Fold)')
ylabel('Number of Observations')
title('Nonstratified Partition')
legend(G)
回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Input Specification 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!