I am trying to use a different data for my Validation and it is saying that: Training and validation responses must have the same categories. To view the categories of the res
1 次查看(过去 30 天)
显示 更早的评论
myfolder = 'C:\Users\Myname\Downloads\fall dataset\rgb';
dataDir = fullfile(myfolder);
imdir = fullfile(dataDir);
myfolder2 = 'C:\Users\Myname\Downloads\Validation';
dataDir2 = fullfile(myfolder2);
imdir2 = fullfile(dataDir2);
imds = imageDatastore(imdir, "IncludeSubfolders",true ,"LabelSource","foldernames");
imds2 = imageDatastore(imdir2,"IncludeSubfolders",true,"LabelSource","foldernames");
numTrainfiles =5172;
numValidfiles = 6598;
[imdsTrain] = splitEachLabel(imds,numTrainfiles,'randomized');
[imdsValidation] = splitEachLabel(imds2,numValidfiles,'randomized');
%definingarchitecture
inputSize = [ 240 320 3];
numClasses = numel(categories(imdsTrain.Labels));
numClasses2 = numel(categories(imdsValidation.Labels));
layers = [
imageInputLayer(inputSize)
convolution2dLayer(5,20)
batchNormalizationLayer
reluLayer
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer];
%trainetwork
options = trainingOptions('sgdm', ...
'MaxEpochs',4, ...
'MiniBatchSize',64,...
'ValidationData',imdsValidation, ...
'ValidationFrequency',30, ...
'Verbose',false, ...
'Plots','training-progress');
net = trainNetwork(imdsTrain,layers,options);
YPred = classify(net,imdsValidation);
yvalidation = imdsValidation.Labels;
accuracy = mean(Ypred == yvalidation);
0 个评论
采纳的回答
Philip Brown
2021-11-25
It's likely that your training and validation folders contain different folder names, and those are being used as the class labels. For example, your training set has labels A, B, and C, but your validation set has labels A, B and D. This means your network never learns to classify into class D during training.
0 个评论
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Image Data Workflows 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!