QPSK simulation with AWGN and BER
221 次查看(过去 30 天)
显示 更早的评论
Hey,
I have a matlab code of QPSK simulation over baseband with AWGN noise, I'm calculating BER over each SNR value and plotting it along with
Theoretical BER.
When I'm generating SNR values in dB from 1 to 20 the code only computes simulated BER values from 0 to 10, why is this happening?
% QPSK MODULATION AND BER ESTIMATION IN AWGN CHANNEL
clc; clear all; close all;
N=1e6; % Number of bits transmited
SNRdB= 0:1:20; % SNR for simulation
SNRlin=10.^(SNRdB/10);
BER = zeros(1,length(SNRlin));% simulated BER
SER = zeros(1,length(SNRlin));% simulated SER
b1 = rand(1,N) > 0.5;
b2 = rand(1,N) > 0.5;
% QPSK symbol mapping
I = (2*b1) - 1;
Q = (2*b2) - 1;
S = I + 1j*Q;
N0 = 1./SNRlin; % Variance
for k = 1:length(SNRdB)
noise = sqrt(N0(k)/2)*(randn(1,N) + 1j*randn(1,N)); % AWGN noise
sig_Rx = S + noise; % Recived signal
% For BER calculation
sig_I = real(sig_Rx); % I component
sig_Q = imag(sig_Rx); % Q component
bld_I = sig_I > 0; % I decision
bld_Q = sig_Q > 0; % Q decision
b1_error = (bld_I ~= b1); % Inphase bit error
b2_error = (bld_Q ~= b2); % Quadrature bit error
Error_bit = sum(b1_error) + sum(b2_error); % Total bit error
BER(k) = sum(Error_bit)/(2*N); % Simulated BER
% For SER calculation
error_symbol = or(b1_error, b2_error); % if bit in I or bit in Q either wrong than error
SER(k) = sum(error_symbol)/N;
end
BER_theo = 2*qfunc(sqrt(2*SNRlin)); % Theoretical BER
SER_theo = 2*qfunc(sqrt(2*SNRlin)) - (qfunc(sqrt(2*SNRlin))).^2; % Theoretical SER
figure(1);
semilogy(SNRdB, BER_theo,'r-')
hold on
semilogy(SNRdB, BER,'k*')
xlabel('SNR[dB]')
ylabel('Bit Error Rate');
legend('Theoretical', 'Simulated');
title(['Probability of Bit Error for QPSK Modulation']);
grid on;
hold off;
figure(2);
semilogy(SNRdB, SER_theo,'r-')
hold on
semilogy(SNRdB, SER,'k*')
xlabel('SNR[dB]')
ylabel('Symbol Error Rate');
legend('Theoretical', 'Simulated');
title(['Probability of symbol Error for QPSK Modulation']);
grid on;
hold off;
Here is my output plot:
3 个评论
Jerry Malone
2022-10-20
Here is the problem:
BER_theo = 2*qfunc(sqrt(2*SNRlin)); % Theoretical BER
The 2 coefficient should not be there in for the BER case. It should be:
BER_theo = qfunc(sqrt(2*SNRlin)); % Theoretical BER
采纳的回答
Ashutosh Singh Baghel
2021-12-20
编辑:Ashutosh Singh Baghel
2021-12-20
Hi Daniel,
I understand you wish to plot BER vs. SNR on a semilog scale. If you see the value of 'BER,' it has a '0' value for 'SNR'>10. And only data points with non-zero entries are plotted because a logarithmic scale has no suitable value for a zero. For example -
x = 1:24;
y = [2 0 0 0 2 6 11 0 22 25 27 0 25 20 14 9 4 1 0 0 0 0 0 0];
figure;
semilogy(x, y,'r*--');
figure;
semilogy(x, max(eps, y));
In the second figure, the EPS values appear as 2e-16 (of course). To get a real zero, the scale must be infinitely large.
0 个评论
更多回答(1 个)
KAGANA SARATH
2023-8-1
BER versus SNR for QPSK modulation, I have written following code.
But BER not reducing with increasing SNR in case of simulation. Plesse check the above code and rectify the error if possible.
My MATLAB code is given as follows:
% Simulate the BER versus SNR curve for QPSK under AWGN communication channel.
% Assignment 3: Problem 1
% Empty workspace and close figures
clc; clearvars; close all;
% SNR in dB: snr_db = 10*log10(snr)
snr_db = -5 : 2 : 25;
% dB to linear scale conversion: snr = 10.^(snr_db/10)
snr = 10.^(snr_db/10);
% Define parameters and different numBits values for simulation
numBits = 1000 ;
numSimulations = 100;
%% Theoretical BER calculation for BPSK
qpsk_ber_theoretical = 2 * erfc(sqrt(snr/2)) - ( erfc(sqrt(snr/2))).^2;
qpsk_ber_simulations = zeros(size(snr_db));
%% Calculate BER for each SNR value
for j = 1:length(snr_db)
% Repeat simulations (as random quantities are involved) for numSimulations times
for sim = 1:numSimulations
% Generate Random Bits (0's and 1's) of size 1XnumBits, and it is a row vector
binaryBits_transmitted = randi([0, 1], 1, numBits);
% Make the binary sequence length a multiple of 2 (pad with zeros if needed)
numPaddingBits = mod(length(binaryBits_transmitted), 2);
if numPaddingBits > 0
binaryBits_transmitted = [binaryBits_transmitted, zeros(1, 2 - numPaddingBits)];
end
% Divide the binary sequence into groups of 2 bits each
qpsk_transmitted = reshape(binaryBits_transmitted,2,[])';
% Map each group of 2 bits to the corresponding QPSK symbol
% Initialize QPSK symbols (complex numbers)
qpsk_symbols = [exp(1i*0), exp(1i*pi/2), exp(1i*pi), exp(1i*3*pi/2)];
% Define the mapping from QPSK symbols to their corresponding 2-bit binary representation
qpsk_mapping = [0 0; 0 1; 1 0; 1 1];
% Map binary groups to the corresponding QPSK symbol
qpsk_modulated = qpsk_symbols (bin2dec(num2str(qpsk_transmitted)) + 1) ;
% Energy per bit = Symbol energy / 2
symbolEnergy = mean(abs(qpsk_modulated).^2);
Energy_bit = symbolEnergy / 2;
% Generate complex Gaussian noise samples
% Relate snr to the noise power (This is very important in this entire code)
Noise_Power = 1 / snr(j); % This holds true as Symbol energy is always 1
gaussian_noise = sqrt(Noise_Power) * (randn(1, numBits/2) + 1i * randn(1, numBits/2));
% Add noise to the QPSK modulated symbols to get noisy received signal
received_symbol = qpsk_modulated + gaussian_noise;
%% QPSK Demodulation with threshold as pi/4 in case of QPSK modulation scheme
% Initialize the decision regions (thresholds) for each quadrant
threshold = pi / 4; % ±45 degrees (±π/4 radians)
% Initialize a variable to store the demodulated symbols
qpsk_demodulated = zeros(1, length(received_symbol));
% Perform QPSK demodulation
for i = 1:length(received_symbol)
% Calculate the phase of the received signal
phase = angle(received_symbol(i));
% Perform threshold-based demodulation
if phase >= -3*threshold && phase < -threshold
qpsk_demodulated(i) = qpsk_symbols(1); % QPSK symbol at 0 degrees
elseif phase >= -threshold && phase < threshold
qpsk_demodulated(i) = qpsk_symbols(2); % QPSK symbol at 90 degrees
elseif phase >= threshold && phase < 3*threshold
qpsk_demodulated(i) = qpsk_symbols(3); % QPSK symbol at 180 degrees
else
qpsk_demodulated(i) = qpsk_symbols(4); % QPSK symbol at 270 degrees
end
end
%% QPSK received symbols using inverse process
qpsk_received = zeros(size(qpsk_demodulated));
% Find the closest QPSK symbol for each demodulated symbol
for i = 1: length(qpsk_demodulated)
% Calculate the distance b/w the demodulated symbol and each QPSK symbol
distances = abs(qpsk_demodulated(i) - qpsk_symbols) ;
% Find the index of the closest QPSK symbol
[~, index] = min(distances);
% Convert the index to its corresponding binary representation
binaryRepresentation = qpsk_mapping(index,:);
% Store the binary representation in the 'originalBinarySymbols' array
qpsk_received(2*i-1 : 2*i) = binaryRepresentation;
end
%% Number of bit errors
ErrorBits = xor( binaryBits_transmitted, qpsk_received);
Number_errorBits = sum(ErrorBits == 1); % bitErrors = sum(binaryBits ~= decodedBits)
Bit_Error_Rate = Number_errorBits / (numBits * 2) ;
% Store the calculated BER for this simulation
qpsk_ber_simulations(j) = qpsk_ber_simulations(j) + Bit_Error_Rate;
end
% Calculate Average Bit error rate for all the simulations for this SNR value and numBits
qpsk_simulation(j) = qpsk_ber_simulations (j) / numSimulations ;
end
%end
disp('binaryBits_transmitted');
disp(binaryBits_transmitted);
disp('qpsk_received');
disp(qpsk_received);
disp('qpsk_ber_simulations');
disp(qpsk_ber_simulations);
disp('qpsk_ber_theoretical');
disp(qpsk_ber_theoretical);
% Plot BER versus SNR curve for different numBits values
figure;
semilogy(snr_db, qpsk_simulation, '*-');
hold on;
semilogy(snr_db, qpsk_ber_theoretical, '*-');
hold on;
xlabel('Signal-to-Noise Ratio (SNR) [dB]');
ylabel('Bit Error Rate (BER)');
title('BER vs. SNR for QPSK Modulation');
legend('Simulation', 'Theoretical'); % Add more legends if needed
grid on;
hold off;
Graph is shown below:
Please help me in this regard
0 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 QPSK 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!