this is the program of transcedental equation by varying the wavenumber k0 to find the the value of r and plot
solve the equation reflectivity vs wavenumber plot
1 次查看(过去 30 天)
显示 更早的评论
function kps5
K0 = 1550e-6:1e-6:1600e-6;
for j=1:numel(K0)
k3 = K0(j);
p0 = 0.5;
p1 = 1;
p2 = 1.5;
TOL = 10^-8;
N0 = 100; format long
h1 = p1 - p0;
h2 = p2 - p1;
DELTA1 = (f(p1,k0) - f(p0,k0))/h1;
DELTA2 = (f(p2,k0) - f(p1,k0))/h2;
d = (DELTA2 - DELTA1)/(h2 + h1);
i=3;
while i <= N0
b = DELTA2 + h2*d;
D = (b^2 - 4*f(p2,k0)*d)^(1/2);
if abs(b-D) < abs(b+D)
E = b + D;
else
E = b - D;
end
h = -2*f(p2,k0)/E;
p = p2 + h;
if abs(h) < TOL
disp(p)
break
end
p0 = p1;
p1 = p2;
p2 = p;
h1 = p1 - p0;
h2 = p2 - p1;
DELTA1 = (f(p1,k0) - f(p0,k0))/h1;
DELTA2 = (f(p2,k0) - f(p1,k0))/h2;
d = (DELTA2 - DELTA1)/(h2 + h1);
i=i+1;
end
if i > N0
formatSpec = string('The method failed after N0 iterations,N0= %d \n');
fprintf(formatSpec,N0);
end
P(j)=real(p);
R(j)=real(r)
end
plot(K0,R)
end
function y=f(x,k0)
n0=1.3707;
n1=1.3;
n2=1.59;
n3=1.45
n4=3.46;
na=1.36;
t1=2.10e-6;
t2=0.198e-6;
t3=1e-6;
t4=0.002e-6;
x=1.36-1i*0.0123;
k1=k0*sqrt(n1.^2-x.^2);
k2=k0*sqrt(n2.^2-x.^2);
k3=k0*sqrt(n3.^2-x.^2);
k4=k0*sqrt(n4.^2-x.^2);
m11= cos(t1*k1)*cos(t2*k2)-(k2/k1)*sin(t1*k1)*sin(t2*k2);
m12=(1/k2)*(cos(t1*k1)*sin(t2*k2)*1i) +(1/k1)*(cos(t2*k2)*sin(t1*k1)*1i);
m21= (k1)*cos(t2*k2)*sin(t1*k1)*%i +(k2)*cos(t1*k1)*sin(t2*k2)*%i;
m22=cos(t1*k1)*cos(t2*k2)-(k1/k2)*sin(t1*k1)*sin(t2*k2);
m34= cos(t3*k3)*cos(t4*k4)-(k4/k3)*sin(t3*k3)*sin(t4*k4);
m32=(1/k4)*(cos(t3*k3)*sin(t4*k4)*1i) +(1/k3)*(cos(t4*k4)*sin(t3*k3)*1i);
m23= (k3)*cos(t4*k4)*sin(t3*k3)*1i +(k4)*cos(t3*k3)*sin(t4*k4)*1i;
m33=cos(t3*k3)*cos(t4*k4)-(k3/k4)*sin(t3*k3)*sin(t4*k4);
M11=m11*m34+m12*m23;
M12=m11*m32+m12*m33;
M21=m21*m34+m22*m23;
M22=m21*m32+m22*m33;
g0=sqrt(x.^2-n0.^2)*k0;
ga= sqrt(x.^2-na.^2)*k0;
y= 1i*(g0*M11/n0^2+ga*M22/na^2)-M21+(g0*ga/n0^2*na^2)*M12 ;
r=(na^2*g0*M11-n0^2*ga*M22+g0*ga*M12-na^2*n0^2*M21)/(na^2*g0*M11+n0^2*ga*M22+g0*ga*M12+na^2*n0^2*M21);
end
回答(0 个)
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!