Info

此问题已关闭。 请重新打开它进行编辑或回答。

Bit Error Rate High Values

1 次查看(过去 30 天)
Kawther
Kawther 2014-12-1
关闭: MATLAB Answer Bot 2021-8-20
Dear All,
I am using this code to find the bit error rate for the Kmeans clustering algorithm for receving a QPSK modulated data. Running the code high BER values are obtained (something more than 80). Can anyone help me with that ASAP.
clear all
clc
T=[ 2+2*i 2-2*i -2+2*i -2-2*i];
A=randn(150,2)+2*ones(150,2); C=randn(150,2)-2*ones(150,2);
B=randn(150,2)+2*ones(150,2); F=randn(150,2)-2*ones(150,2);
D=randn(150,2)+2*ones(150,2); G=randn(150,2)-2*ones(150,2);
E=randn(150,2)+2*ones(150,2); H=randn(150,2)-2*ones(150,2);
X = [A; B; D; C; F; E; G; H];
for k=1:5
[idx, centroids] = kmeans(X, k, 'Replicates', 20);
x = X(:,1);
y = X(:,2);
BER=[];
for nn=1:4
ber=0;
gt = zeros(1,4);
for idx = 1 : 4
[dummy,gt(idx)] = min(sum(bsxfun(@minus, [real(T(idx)), imag(T(idx))],...
centroids).^2, 2));
end
randn('seed',123);
rand_ind = randi(4, 10, 1);
test_sequence = T(rand_ind);
gt_labels = gt(rand_ind);
x = real(test_sequence).*(nn*randn(1, 10));
y = imag(test_sequence).*(nn*randn(1, 10));
labels = zeros(1, 10);
for idx = 1 : 10
[dummy,labels(idx)] = min(sum(bsxfun(@minus, [x(idx), y(idx)],...
centroids).^2, 2));
end
ber = sum(labels ~= gt_labels) / 10 * 100;
BER=[BER ber];
end
plot(nn,BER)
end
Thank you very much. Kawther

回答(0 个)

此问题已关闭。

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by