How to extract the coordinates of points/vertices in a curve?
19 次查看(过去 30 天)
显示 更早的评论
I have plotted a sinosoidal closed curve in Matlab. I want to divide that curve into 120 vertices and get the coordinates of each vertices. Now here is my question: how to write the code and extract the output (coordinates of each vertex) in matlab?
Here is the code for closed curve:
t = 0:0.01:2*pi; %define interval
x = cos(t);
y = sin(t);
f = 10; %define modulation frequency
A = .2; % modulation amplitude
R = A*cos(f*t); %
z = R;
figure;
plot3(x,y,z);
1 个评论
Dyuman Joshi
2022-3-6
You already have the coordinates in the form of x,y and z.
Do you mean from graph by a certain method?
采纳的回答
更多回答(1 个)
Bruno Luong
2022-3-9
clear
MeshSize = 0.04;
LensStr = 'osci';
radius = 1;
%%
n = ceil(radius/MeshSize); % radial resolution
[X,F] = CreateDiskMesh([0 0 0], radius, n);
[X,F] = CompactMesh(X,F,1e-9,false);
x = X(:,1);
y = X(:,2);
f = 10; %define modulation frequency
A = .2; % modulation amplitude
theta = atan2(y,x);
Z = A*cos(f*theta);
X(:,3) = Z;
fig = figure();
set(fig, 'Name', LensStr);
ax = axes('Parent',fig);
hold(ax, 'on');
trisurf(F, X(:,1), X(:,2), X(:,3), 'Parent', ax);
view(ax,3);
xlabel('x')
ylabel('y')
zlabel('z')
axis(ax, 'equal');
%%
function [X,F] = AddMesh(X,F,X1,F1)
F = [F; F1+size(X,1)];
X = [X; X1];
end
%%
function [X,F] = CreateDiskMesh(xyzc, a, n)
% radius of the inner/outer spherical parts
W = allVL1(3, n); % FEX file
% Connectivity
XY0 = W*[0 sqrt(3)/2 sqrt(3)/2;
0 -0.5 +0.5].' *(1/n);
F0 = delaunay(XY0);
phi = XY0(:,2)./XY0(:,1)*(pi/(2*sqrt(3)));
phi(XY0(:,1)==0) = 0;
r = XY0(:,1)*(2/sqrt(3));
XY0 = r.*[cos(phi),sin(phi)];
XY0 = XY0*a;
xyzc = xyzc(:).';
F=[];
X=[];
for k=0:5
theta = k*pi/3;
R = [cos(theta), -sin(theta);
sin(theta), cos(theta)];
XYZ = XY0*R';
XYZ(:,3) = 0;
XYZ = XYZ + xyzc;
Fk = F0;
[X,F] = AddMesh(X, F, XYZ, Fk);
end
[X,F] = CompactMesh(X,F,1e-9,true);
end
%%
function [V,F] = CompactMesh(V,F,mergetol,orientface)
if mergetol == 0
[V,I,J] = unique(V, 'rows');
else
[V,I,J] = uniquetol(V, mergetol, 'DataScale', 1, 'ByRows', true);
end
F = J(F);
if length(I)<length(J)
remove = F(:,1)==F(:,2) | F(:,2)==F(:,3) | F(:,3)==F(:,1);
F(remove,:) = [];
end
if orientface
T = permute(reshape(V(F,:),[],3,3),[3 2 1]);
N = cross_dim1(T(:,2,:)-T(:,1,:),T(:,3,:)-T(:,2,:));
N = reshape(N,3,[]);
Nz = N(3,:);
keep = Nz > 0.1*max(Nz(:));
F = F(keep,:);
end
end
function v = allVL1(n, L1, L1ops, MaxNbSol)
% All integer permutations with sum criteria
%
% function v=allVL1(n, L1); OR
% v=allVL1(n, L1, L1opt);
% v=allVL1(n, L1, L1opt, MaxNbSol);
%
% INPUT
% n: length of the vector
% L1: target L1 norm
% L1ops: optional string ('==' or '<=' or '<')
% default value is '=='
% MaxNbSol: integer, returns at most MaxNbSol permutations.
% When MaxNbSol is NaN, allVL1 returns the total number of all possible
% permutations, which is useful to check the feasibility before getting
% the permutations.
% OUTPUT:
% v: (m x n) array such as: sum(v,2) == L1,
% (or <= or < depending on L1ops)
% all elements of v is naturel numbers {0,1,...}
% v contains all (=m) possible combinations
% v is sorted by sum (L1 norm), then by dictionnary sorting criteria
% class(v) is same as class(L1)
% Algorithm:
% Recursive
% Remark:
% allVL1(n,L1-n)+1 for natural numbers defined as {1,2,...}
% Example:
% This function can be used to generate all orders of all
% multivariable polynomials of degree p in R^n:
% Order = allVL1(n, p)
% Author: Bruno Luong
% Original, 30/nov/2007
% Version 1.1, 30/apr/2008: Add H1 line as suggested by John D'Errico
% 1.2, 17/may/2009: Possibility to get the number of permutations
% alone (set fourth parameter MaxNbSol to NaN)
% 1.3, 16/Sep/2009: Correct bug for number of solution
% 1.4, 18/Dec/2010: + non-recursive engine
% 1.5: 01/Aug/2020: fix bug of AllVL1(1,1) returns wrong result
global MaxCounter;
if nargin<3 || isempty(L1ops)
L1ops = '==';
end
n = floor(n); % make sure n is integer
if n<1
v = [];
return
end
if nargin<4 || isempty(MaxNbSol)
MaxCounter = Inf;
else
MaxCounter = MaxNbSol;
end
Counter(0);
switch L1ops
case {'==' '='}
if isnan(MaxCounter)
% return the number of solutions
v = nchoosek(n+L1-1,L1); % nchoosek(n+L1-1,n-1)
else
v = allVL1eq(n, L1);
end
case '<=' % call allVL1eq for various sum targets
if isnan(MaxCounter)
% return the number of solutions
%v = nchoosek(n+L1,L1)*factorial(n-L1); BUG <- 16/Sep/2009:
v = 0;
for j=0:L1
v = v + nchoosek(n+j-1,j);
end
% See pascal's 11th identity, the sum doesn't seem to
% simplify to a fix formula
else
v = cell2mat(arrayfun(@(j) allVL1eq(n, j), (0:L1)', ...
'UniformOutput', false));
end
case '<'
v = allVL1(n, L1-1, '<=', MaxCounter);
otherwise
error('allVL1: unknown L1ops')
end
end % allVL1
%%
function v = allVL1eq(n, L1)
global MaxCounter;
n = feval(class(L1),n);
s = n+L1;
sd = double(n)+double(L1);
notoverflowed = double(s)==sd;
if isinf(MaxCounter) && notoverflowed
v = allVL1nonrecurs(n, L1);
else
v = allVL1recurs(n, L1);
end
end % allVL1eq
%% Recursive engine
function v = allVL1recurs(n, L1, head)
% function v=allVL1eq(n, L1);
% INPUT
% n: length of the vector
% L1: desired L1 norm
% head: optional parameter to by concatenate in the first column
% of the output
% OUTPUT:
% if head is not defined
% v: (m x n) array such as sum(v,2)==L1
% all elements of v is naturel numbers {0,1,...}
% v contains all (=m) possible combinations
% v is (dictionnary) sorted
% Algorithm:
% Recursive
global MaxCounter;
if n==1
if Counter < MaxCounter
v = L1;
else
v = zeros(0,1,class(L1));
end
else % recursive call
v = cell2mat(arrayfun(@(j) allVL1recurs(n-1, L1-j, j), (0:L1)', ...
'UniformOutput', false));
end
if nargin>=3 % add a head column
v = [head+zeros(size(v,1),1,class(head)) v];
end
end % allVL1recurs
%%
function res=Counter(newval)
persistent counter;
if nargin>=1
counter = newval;
res = counter;
else
res = counter;
counter = counter+1;
end
end % Counter
%% Non-recursive engine
function v = allVL1nonrecurs(n, L1)
% function v=allVL1eq(n, L1);
% INPUT
% n: length of the vector
% L1: desired L1 norm
% OUTPUT:
% if head is not defined
% v: (m x n) array such as sum(v,2)==L1
% all elements of v is naturel numbers {0,1,...}
% v contains all (=m) possible combinations
% v is (dictionnary) sorted
% Algorithm:
% NonRecursive
% Chose (n-1) the splitting points of the array [0:(n+L1)]
p = n+L1-1;
if p ~= 1 % bug occurs for allVL1nonrecurs(1,1) since
% nchoosek take 1 vector length and not vector it self
s = nchoosek(1:p,n-1);
else
if n == 1
s = zeros(1,0);
elseif n == 2
s = 1;
end
end
m = size(s,1);
s1 = zeros(m,1,class(L1));
s2 = (n+L1)+s1;
v = diff([s1 s s2],1,2); % m x n
v = v-1;
end % allVL1nonrecurs
function c = cross_dim1(a,b)
% c = cross_dim1(a,b)
% Calculate cross product along the first dimension
% NOTE: auto expansion allowed
c = zeros(max(size(a),size(b)));
c(1,:) = a(2,:).*b(3,:)-a(3,:).*b(2,:);
c(2,:) = a(3,:).*b(1,:)-a(1,:).*b(3,:);
c(3,:) = a(1,:).*b(2,:)-a(2,:).*b(1,:);
end % cross_dim1
7 个评论
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Surface and Mesh Plots 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!