"Error using vertcat Dimensions of arrays being concatenated are not consistent." why this error showing?
2 次查看(过去 30 天)
显示 更早的评论
function M = mass(t,q)
% Mass matrix function
M = zeros(4,4);
M(1,1) = 1;
M(2,2) = 1;
M(3,3) = 1;
M(4,2) = 1;
M(4,4) = 1;
end
function dqdt = my_ode(t,q)
%% Conversion to first order parameters
% y = q(1); %% displacement of damper
% ydot = q(2); %% velocity of damper
% yddot = q(2)dot; %% acceleration of damper
% z = q(3); %% displacement of structure
% zdot = q(4); %% velocity of structure
% zddot = q(4)dot; %% acceleration of structure
% q = [q(1) q(2) q(3) q(4)]; %% Output parameters
% tspan = i; %% Time span
%% Initial inputs
m1 = 200; %% mass of the structure(kg)
k1 = 15; %% stiffness of the structure(N/m)
c1 = 5; %% damping of the structure(Ns/m)
k2 = 150; %% stiffness of the damper(N/m)
R = 0.5; %% Radius of the tank(m)
h = 0.05; %% Height of liquid in tank(m)
g = 9.81; %% Acceleration due to gravity(m/s^2)
A = 0.05; %% Amplitude of ground displacement(m)
f = 1; %% Input frequencycy(Hz)
rho = 1000; %% Density of fluid(Kg/m^3)
xi = 1.841; %% First derivative of the Bessel function for first mode
fs = 1.111; %% Frequency of structure(Hz)
n = 1; %% Tuning ratio
nu = 10^-6; %% Kinematic viscosity of water(m^2/s)
t = 0:0.1:20; %%Time span
%% Mass of the damper
m2 = ((pi*rho*R^3)/2.2)*tanh(xi*h/R);
%% Damping coefficient of damper
c2 = ((5.78*sqrt(m2*k2))/pi)*sqrt(nu/((R)^1.5*(g)^0.5))*(1+((0.318/sinh(xi*h/R))*(1+((1-h/R)/cosh(xi*h/R)))));
%% structure frequency
w1 = 3.48;
%% damper frequency
w2 = sqrt(xi*g*tanh(xi*(h/R))/R);
%% define damping factor of damper
r2 = c2/(2*m2*w2);
%% define damping factor of structure
r1 = 0.01;
%% define mass ratio
barm = (((R^3*pi*rho)/(2.2))*tanh(xi*(h/R)))/(m1);
%% define ground acceleration
ugdd = A*sin(2*pi*f*t);
%% Equation to solve
dqdt = [q(2)
(-2*r1*w1*q(2))-((w1)^2*q(1))+(2*r2*w2*barm*q(4))+(barm*(w2)^2*q(3))-ugdd
q(4)
-ugdd-(2*r2*w2*q(4))-((w2)^2*q(3))];
clc;
clear all;
%% To run mass spring damper system
tspan = 0:0.1:20;
q = [0 0 0 0];
opts = odeset('Mass',@(t,q) mass(t,q));
%% Solve using ode45
[tsol,qsol] = ode45(@(t,q)my_ode(t,q),tspan,q,opts);
%% plotting
plot(tsol,qsol(:,1))
xlabel('time(sec)')
ylabel('displacement(m)')
grid on
title('displacement response of structure')
figure
plot(tsol,qsol(:,2))
xlabel('time(sec)')
ylabel('velocity(m/s)')
grid on
title('Velocity response of structure')
0 个评论
另请参阅
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!