Calculate convolution of two given continuous signals in matlab

157 次查看(过去 30 天)
If I have two continuous signals ,f1(t) = g10(t) and f2(t) = (e^-t)*u(t). How can I calculate the convolution and plot the graph for that? N:B: here g10 means the width of rectangular is 10(eg: -5 to 5)

采纳的回答

Paul
Paul 2022-6-5
Closed form solution using symbolic math
syms t tau real
f1(t) = rectangularPulse(-5,5,t);
f2(t) = exp(-t)*heaviside(t);
y1(t) = int(f1(tau)*f2(t-tau),tau,-5,t)
y1(t) = 
figure;
fplot(y1(t),[-10 10])
hold on
Numerical solution using integral()
f1 = @(t) abs(t) <= 5;
f2 = @(t) exp(-t).*(t>=0);
y2 = @(t) integral(@(tau)(f1(tau).*f2(t-tau)),-5,t);
for tval = -7:2:10
plot(tval,y2(tval),'rx')
end
Numerical solution using conv(). Note that we have to settle for a vaue of t where we are willing to accept f2(t) = 0
dt = 0.1;
tval = -5:dt:15;
y3 = conv(f1(tval),f2(tval))*dt;
conv() assumes that the sequences start at t = 0, so we have to shift our time reference left by 5. Make dt smaller to improve the convolution sum approximation.
plot(tval-5,y3(1:numel(tval)),'ko')
legend('Closed Form','integral()','conv()','Location','NorthWest')

更多回答(1 个)

Paul
Paul 2022-5-27
Assuming a closed form solution is desired this problem can be solved with the Symbolic Math Toolbox
and also exp() (no doc page for Symbolic Math Toolbox version?)
  2 个评论
Chihiro Ogino
Chihiro Ogino 2022-5-28
But it shows that I've no Symbolic Toolbox. This is my very first tme using Matlab , and I'm totally lost how to overcome the issues
Paul
Paul 2022-5-28
Then I guess you'll have to either do it by hand (or use other s/w that can do it symbolically), or you can use
to compute a numerical approximation of the convolution integral, or can use
to compute a numerical approximation to the convolution integral via the convolution sum.

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Symbolic Math Toolbox 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by