Kind of remember seeing a similar question few days ago. Probably your classmate. Anyway, this is how you can plot the step response of a closed-loop system.
Question 1:
% Plant
Gp = tf(1, [1 10 20])
% Question 1
[Gc1, info] = pidtune(Gp, 'P')
% Closed-loop system
Gcl1 = minreal(feedback(Gc1*Gp, 1))
step(Gcl1, 3) % steady-state error between 0.8 and 1.0 is significant.
% bode(Gcl1)
% nyquist(Gcl1)
Question 2:
% Question 2
[Gc2, info] = pidtune(Gp, 'PD')
% Closed-loop system
Gcl2 = minreal(feedback(Gc2*Gp, 1))
step(Gcl2, 3) % response is super fast and steady-state error is reduced substantially 1 - 1216/1236, but overshoot is relatively high
% bode(Gcl2)
% nyquist(Gcl2)
Question 3:
% Question 3
[Gc3, info] = pidtune(Gp, 'PID')
% Closed-loop system
Gcl3 = minreal(feedback(Gc3*Gp, 1))
step(Gcl3, 3) % no steady-state error and the overshoot is reduced. Response settles under 2 seconds.
% bode(Gcl3)
% nyquist(Gcl3)