Fourth order approx. of first derivative.
3 次查看(过去 30 天)
显示 更早的评论
I am working with numerical differentiation and I am approximating the first derivative of f(x)=sin^2(x) with a fourth order approximation of the form:
I have the following code to approximate f'(x) at a = pi/4
k = 1:15;
h = 10.^(-k);
a = pi/4;
D = (1/12.*h).*(-3.*sin(a-h).^2-10.*sin(a).^2+18.*sin(a+h).^2-...
6.*sin(a+2.*h).^2+sin(a+3.*h).^2);
As h gets smaller D should be getting closer to 1 but when I run this code D gets closer to zero. Am I imputing the sin term incorrectly?
0 个评论
采纳的回答
Roger Stafford
2015-2-25
Your code for 'D' has an error. You have multiplied by 'h' instead of dividing by it. The code should read:
D = (1/12./h).*(-3.*sin(a-h).^2 ...........
4 个评论
John D'Errico
2015-2-25
I thought so. A worthwhile thing to do is to look at the centered difference to compute that same value, varying over -2h to +2h. Why would it be a better choice of method in general? Thus, something like this (assuming I did my back of the envelope computations properly)
((f(2h) - f(-2h)) - 8*(f(h) - f(-h)))/(12h)
Why might the above template be a better choice in general, if it is available?
更多回答(0 个)
另请参阅
类别
在 Help Center 和 File Exchange 中查找有关 Polynomials 的更多信息
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!