calculate coefficients with linear regression

30 次查看(过去 30 天)
i have a set of data (xj, yj) which describe a function f(x) = a0 + a1x +a2 x^2 +a3 e^x
how can i find the coefficents a0, a1,a2,a3 modeling with linear regression and using quatratic programming.
so far i have found the slope and intercept.
my code is:
clc
clear
load('DataEx3(1).mat');
% calculating the mean for the x and y variable
x_mean = mean(xj);
y_mean = mean(yj);
% number of data points
n = length(xj);
%cross deviation of x and y
dev_xy = sum(xj*yj.') - (n*x_mean*y_mean);
%square deviation of x
dev_x = sum(xj*xj.') - (n*x_mean*x_mean);
% calculation of optimum coefficient a
a = dev_xy/dev_x;
% calculation of optimum intercept (c)
c = y_mean - (a*x_mean);
disp('value of coffiecent m is: '); disp(a);
disp('value of optimum intercept is: '); disp(c);
% best line has the form y = mx+c

采纳的回答

Torsten
Torsten 2022-10-12
编辑:Torsten 2022-10-12
A = [ones(numel(xj),1),xj,xj.^2,exp(xj)];
b = yj;
sol = A\b;
a0 = sol(1)
a1 = sol(2)
a2 = sol(3)
a3 = sol(4)
where xj and yj are used as column vectors.
  2 个评论
Antrea Plastira
Antrea Plastira 2022-10-12
when i tried this way, it appears the following message:
Error using horzcat
Dimensions of arrays being concatenated are not consistent.
Error in assignment1 (line 31)
A = [ones(numel(xj),1),xj,xj.^2,exp(xj)];
i forgot to mention that the xj and yj data provided are [1x401] double
Torsten
Torsten 2022-10-12
编辑:Torsten 2022-10-12
As I wrote, you have to turn xj and yj into column vectors.
Your xj and yj are row vectors.

请先登录,再进行评论。

更多回答(1 个)

Image Analyst
Image Analyst 2022-10-12
Why do you want to use linear regression for that very non-linear function? Why not use fitnlm to do a non-linear fit to your equation? Demos attached.
  2 个评论
Torsten
Torsten 2022-10-12
The function is linear in the parameters to be fitted. Thus a linear regression suffices.
Image Analyst
Image Analyst 2022-10-12
@Torsten Oh (sound of hand slapping forehead) you're right.
However if the x in the exponential had a coefficient a4,
f(x) = a0 + a1 * x + a2 * x^2 + a3 * exp(a4 *x)
then we could use fitnlm. Not sure why that last x doesn't have a coefficient, which would allow for a "slope" or different steepnesses of the exponential term. I think that would give a more flexible model. You could always put in a4, and if it's 1, then it's 1, and a linear estimation is fine. But if a4 is not 1, it might be a better model by including a4.

请先登录,再进行评论。

类别

Help CenterFile Exchange 中查找有关 Linear and Nonlinear Regression 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by