Why is the loop infinite?

1 次查看(过去 30 天)
Jacob Savona
Jacob Savona 2015-3-12
Trying to do False Position method for the taylor series expansion of sin(x)= sigma(sum)]k=0=inf ((-1^k)/(2*p+1)!)*((x)^(2*k+1)). Input k, bounds between a small number>0 and 3pi/2, Error<.0001. Function should also find the error between the root of the series and the actual root of the function. Error = abs(actual_value-estimate/ actual_value)Actual root should equal pi/2 because I'm solving for sin(x)=0 right? There are two outputs for the function, the estimate root and the error of the root. On one figure plot: 1) Sin(x)-- 2) The polynomial produced from the first k terms of the Taylor expansion-- 3) The false position guesses-- 4). The actual root of sin(x) Code:
function [root,root_error]= HW7_JAS_2(k)
x_lower=.000001;%initial lower bound
x_upper=(3*pi)/2;%initial upper bound
x_true=pi/2;%actual value for x
x_root=0;
lower_b=zeros(1,k+1);
upper_b=zeros(1,k+1);
it=1;
while abs((x_true-x_root)/x_true) > .0001
for p=0:k
lower_b(p+1)=((-1^p)/factorial(2*p+1))*((x_lower).^(2*p+1));%put through taylor series expansion
upper_b(p+1)=((-1^p)/factorial(2*p+1))*((x_upper).^(2*p+1));%put through taylor series expansion
end
sumlower_b=sum(lower_b);%f(lower bound)
sumupper_b=sum(upper_b);%f(upper bound)
x_root=(x_upper)-(((sumlower_b)*(x_lower-x_upper))/(sumlower_b-sumupper_b));%calculates root
fx_root=sin(x_root);%f(root)
if lower_b * fx_root <0
x_upper= x_root;
elseif upper_b * fx_root <0
x_lower= x_root;
elseif lower_b * fx_root ==0
root = x_root;
end
plot(it,x_root,'g*');%plots false position guesses
hold on%allows each guess to be plotted
xlabel('Iterations');
ylabel('Estimated time values');
legend('Iterations vs Estimated time values');
it=it+1;%new iteration
end
root_error= abs((x_true-x_root)/x_true);%error in the root
x=0:.1:2*pi;
plot(x,sin(x),'r-');
xlabel('x values');
ylabel('sin(x) values');
legend('sin(x)');
hold on
x1=0:.1:root;
plot(x1,sin(root),'b-');
xlabel('x values stopped at root value');
ylabel('sin(x) values stopped at sin(root)');
legend('sin(root)');% The polynomial produced from the first k terms of the Taylor expansion
hold on
plot(x_true,sin(x_true),'yx');
xlabel('x values');
ylabel('y values');
legend('Real root of sin(x)');
end
Posted this earlier but the website deleted it for some reason. Thanks for any help. Posted

回答(0 个)

类别

Help CenterFile Exchange 中查找有关 Calculus 的更多信息

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by